Equation of Vlasov-Maxwell-Einstein Type and Transition to a Weakly Relativistic Approximation

被引:8
作者
Vedenyapin, V. V. [1 ,2 ]
Fimin, N. N. [1 ]
Chechetkin, V. M. [1 ,3 ]
机构
[1] Russian Acad Sci, Keldysh Inst Appl Math, Fed Res Ctr, Moscow 125047, Russia
[2] RUDN Univ, Moscow 117198, Russia
[3] Russian Acad Sci, Inst Comp Aided Design, Moscow 123056, Russia
关键词
Milne-McCrea model; Vlasov-Maxwell-Einstein equation; Lagrangian; cosmological constant; Hilbert action; TIME AVERAGES; DARK ENERGY; BOLTZMANN; CLASSIFICATION; SYSTEM;
D O I
10.1134/S0965542519110137
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The gravitational Lagrangian of general relativity is considered together with the Lagrangian of electromagnetism. Vlasov-type equations are derived from the former in the general, nonrelativistic, and weakly relativistic limits. Expressions for the resulting corrections to the Poisson equation are proposed, which may contribute to the effective action of dark matter and dark energy.
引用
收藏
页码:1816 / 1831
页数:16
相关论文
共 50 条
[1]   Generalized Boltzmann-Type Equations for Aggregation in Gases [J].
Adzhiev, S. Z. ;
Vedenyapin, V. V. ;
Volkov, Yu. A. ;
Melikhov, I. V. .
COMPUTATIONAL MATHEMATICS AND MATHEMATICAL PHYSICS, 2017, 57 (12) :2017-2029
[2]   Time averages and Boltzmann extremals for Markov chains, discrete Liouville equations, and the Kac circular model [J].
Adzhiev, S. Z. ;
Vedenyapin, V. V. .
COMPUTATIONAL MATHEMATICS AND MATHEMATICAL PHYSICS, 2011, 51 (11) :1942-1952
[3]  
[Anonymous], 2002, RELATIVISTIC BOLTZMA, DOI DOI 10.1007/978-3-0348-8165-4
[4]  
[Anonymous], 1986, Theoretical Physics. Hydrodynamics
[5]  
[Anonymous], 2001, BOLTZMANN VLASOV KIN
[6]   GLOBAL SYMMETRIC SOLUTIONS OF INITIAL VALUE-PROBLEM OF STELLAR DYNAMICS [J].
BATT, J .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1977, 25 (03) :342-364
[7]   MACHS PRINCIPLE AND A RELATIVISTIC THEORY OF GRAVITATION [J].
BRANS, C ;
DICKE, RH .
PHYSICAL REVIEW, 1961, 124 (03) :925-&
[8]   Dark energy and universal antigravitation [J].
Chernin, A. D. .
PHYSICS-USPEKHI, 2008, 51 (03) :253-282
[9]  
Choquet-Bruhat Y., 2009, General Relativity and the Einstein Equations
[10]  
Choquet-Bruhat Y., 2015, INTRO GEN RELATIVITY