The Polyphase Random Demodulator for Wideband Compressive Sensing

被引:0
作者
Laska, Jason N. [1 ]
Slavinsky, J. P. [1 ]
Baraniuk, Richard G. [1 ]
机构
[1] Rice Univ, Dept Elect & Comp Engn, Houston, TX 77005 USA
来源
2011 CONFERENCE RECORD OF THE FORTY-FIFTH ASILOMAR CONFERENCE ON SIGNALS, SYSTEMS & COMPUTERS (ASILOMAR) | 2011年
关键词
SIGNAL RECOVERY;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Compressive sensing (CS) provides a mathematical platform for designing analog-to-digital converters (ADCs) that sample signals at sub-Nyquist rates. In particular, the framework espouses a linear sensing system coupled with a non-linear, iterative computational recovery algorithm. A central problem within this platform is the design of practical hardware systems that can be easily calibrated and coupled with computational recovery algorithms. In this paper, we propose a new CS-ADC that resolves some of the practical issues present in prior work. We dub this new system the polyphase random demodulator.
引用
收藏
页码:515 / 519
页数:5
相关论文
共 23 条
[1]  
Bajwa W., 2007, P IEEE WORK STAT SIG
[2]   Iterative hard thresholding for compressed sensing [J].
Blumensath, Thomas ;
Davies, Mike E. .
APPLIED AND COMPUTATIONAL HARMONIC ANALYSIS, 2009, 27 (03) :265-274
[3]  
Candes E., 2011, LMS INVITED LECT SER
[4]  
Candes E. J., 2010, IEEE T INFORM THEORY
[5]  
Candes E. J., 2006, P INT C MATH MADR SP, V3, P1433, DOI DOI 10.4171/022-3/69
[6]   Sparsity and incoherence in compressive sampling [J].
Candes, Emmanuel ;
Romberg, Justin .
INVERSE PROBLEMS, 2007, 23 (03) :969-985
[7]   The restricted isometry property and its implications for compressed sensing [J].
Candes, Emmanuel J. .
COMPTES RENDUS MATHEMATIQUE, 2008, 346 (9-10) :589-592
[8]   Stable signal recovery from incomplete and inaccurate measurements [J].
Candes, Emmanuel J. ;
Romberg, Justin K. ;
Tao, Terence .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2006, 59 (08) :1207-1223
[9]  
Davenport M., 2011, PREPRINT
[10]   Compressed sensing [J].
Donoho, DL .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2006, 52 (04) :1289-1306