Regularity of maximal functions on Hardy-Sobolev spaces

被引:13
作者
Perez, Carlos [1 ,2 ]
Picon, Tiago [3 ]
Saari, Olli [4 ]
Sousa, Mateus [5 ]
机构
[1] Univ Basque Country, UPV EHU, Dept Matemat, IKERBASQUE,Basque Fdn Sci, Bilbao, Spain
[2] BCAM, Bilbao, Spain
[3] Univ Sao Paulo, Fac Filosofia Ciencias & Letras Ribeirao Preto, Dept Comp & Matemat, Ave Bandeirantes 3900, BR-1404040 Ribeirao Preto, Brazil
[4] Univ Bonn, Inst Math, Endenicher Allee 60, D-53115 Bonn, Germany
[5] IMPA, BR-22460320 Rio De Janeiro, RJ, Brazil
基金
芬兰科学院;
关键词
SELF-IMPROVING PROPERTIES; INEQUALITIES; OPERATOR; VERSION;
D O I
10.1112/blms.12195
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove that maximal operators of convolution type associated to smooth kernels are bounded in the homogeneous Hardy-Sobolev spaces (H) over dot(1,p)(R-d) when p>d/(d+1). This range of exponents is sharp. As a by-product of the proof, we obtain similar results for the local Hardy-Sobolev spaces (h) over dot(1,p)(R-d) in the same range of exponents.
引用
收藏
页码:1007 / 1015
页数:9
相关论文
共 50 条
[41]   Sobolev spaces of symmetric functions and applications [J].
de Figueiredo, Djairo Guedes ;
dos Santos, Ederson Moreira ;
Miyagaki, Olimpio Hiroshi .
JOURNAL OF FUNCTIONAL ANALYSIS, 2011, 261 (12) :3735-3770
[42]   A Positive Solution for a Weighted p-Laplace Equation with Hardy-Sobolev's Critical Exponent [J].
Razani, Abdolrahman ;
Costa, Gustavo S. ;
Figueiredo, Giovany M. .
BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2024, 47 (02)
[43]   Hardy-Poincar?-Sobolev type inequalities on hyperbolic spaces and related Riemannian manifolds [J].
Flynn, Joshua ;
Lam, Nguyen ;
Lu, Guozhen .
JOURNAL OF FUNCTIONAL ANALYSIS, 2022, 283 (12)
[44]   Existence and multiplicity of symmetric solutions for semilinear elliptic equations with singular potentials and critical Hardy-Sobolev exponents [J].
Deng, Zhiying ;
Huang, Yisheng .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2012, 393 (01) :273-284
[45]   Hardy-Littlewood maximal operators and generalized Orlicz spaces on measure spaces [J].
Zhou, Haiyan ;
Song, Xiaoqian ;
Wang, Songbai ;
Zhou, Jiang .
ANNALS OF FUNCTIONAL ANALYSIS, 2025, 16 (01)
[46]   Sobolev boundedness and continuity for commutators of the local Hardy-Littlewood maximal function [J].
Liu, Feng ;
Xue, Qingying ;
Yabuta, Kozo .
ANNALES FENNICI MATHEMATICI, 2022, 47 (01) :203-235
[47]   Asymptotic behavior of the least-energy solutions of a semilinear elliptic equation with the Hardy-Sobolev critical exponent [J].
Hashizume, Masato .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2017, 262 (03) :3107-3131
[48]   Multiple positive solutions for Robin problem involving critical weighted Hardy-Sobolev exponents with boundary singularities [J].
Song, Yuan-Yuan ;
Wu, Xing-Ping ;
Tang, Chun-Lei .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2014, 414 (01) :211-236
[49]   Maximal functions, Riesz potentials and Sobolev embeddings on Musielak-Orlicz-Morrey spaces of variable exponent in Rn [J].
Mizuta, Yoshihiro ;
Nakai, Eiichi ;
Ohno, Takao ;
Shimomura, Tetsu .
REVISTA MATEMATICA COMPLUTENSE, 2012, 25 (02) :413-434
[50]   Extremal functions on Sobolev-Dunkl spaces [J].
Soltani, Fethi .
INTEGRAL TRANSFORMS AND SPECIAL FUNCTIONS, 2013, 24 (07) :582-595