共 50 条
Regularity of maximal functions on Hardy-Sobolev spaces
被引:13
作者:
Perez, Carlos
[1
,2
]
Picon, Tiago
[3
]
Saari, Olli
[4
]
Sousa, Mateus
[5
]
机构:
[1] Univ Basque Country, UPV EHU, Dept Matemat, IKERBASQUE,Basque Fdn Sci, Bilbao, Spain
[2] BCAM, Bilbao, Spain
[3] Univ Sao Paulo, Fac Filosofia Ciencias & Letras Ribeirao Preto, Dept Comp & Matemat, Ave Bandeirantes 3900, BR-1404040 Ribeirao Preto, Brazil
[4] Univ Bonn, Inst Math, Endenicher Allee 60, D-53115 Bonn, Germany
[5] IMPA, BR-22460320 Rio De Janeiro, RJ, Brazil
基金:
芬兰科学院;
关键词:
SELF-IMPROVING PROPERTIES;
INEQUALITIES;
OPERATOR;
VERSION;
D O I:
10.1112/blms.12195
中图分类号:
O1 [数学];
学科分类号:
0701 ;
070101 ;
摘要:
We prove that maximal operators of convolution type associated to smooth kernels are bounded in the homogeneous Hardy-Sobolev spaces (H) over dot(1,p)(R-d) when p>d/(d+1). This range of exponents is sharp. As a by-product of the proof, we obtain similar results for the local Hardy-Sobolev spaces (h) over dot(1,p)(R-d) in the same range of exponents.
引用
收藏
页码:1007 / 1015
页数:9
相关论文
共 50 条