Regularity of maximal functions on Hardy-Sobolev spaces

被引:13
作者
Perez, Carlos [1 ,2 ]
Picon, Tiago [3 ]
Saari, Olli [4 ]
Sousa, Mateus [5 ]
机构
[1] Univ Basque Country, UPV EHU, Dept Matemat, IKERBASQUE,Basque Fdn Sci, Bilbao, Spain
[2] BCAM, Bilbao, Spain
[3] Univ Sao Paulo, Fac Filosofia Ciencias & Letras Ribeirao Preto, Dept Comp & Matemat, Ave Bandeirantes 3900, BR-1404040 Ribeirao Preto, Brazil
[4] Univ Bonn, Inst Math, Endenicher Allee 60, D-53115 Bonn, Germany
[5] IMPA, BR-22460320 Rio De Janeiro, RJ, Brazil
基金
芬兰科学院;
关键词
SELF-IMPROVING PROPERTIES; INEQUALITIES; OPERATOR; VERSION;
D O I
10.1112/blms.12195
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove that maximal operators of convolution type associated to smooth kernels are bounded in the homogeneous Hardy-Sobolev spaces (H) over dot(1,p)(R-d) when p>d/(d+1). This range of exponents is sharp. As a by-product of the proof, we obtain similar results for the local Hardy-Sobolev spaces (h) over dot(1,p)(R-d) in the same range of exponents.
引用
收藏
页码:1007 / 1015
页数:9
相关论文
共 50 条
[31]   Hardy-Sobolev equation with negative power and sign-changing nonlinearity on closed manifolds [J].
Chen, Nanbo ;
Liang, Honghong ;
Huang, Zhihua ;
Liu, Xiaochun .
JOURNAL OF PSEUDO-DIFFERENTIAL OPERATORS AND APPLICATIONS, 2024, 15 (03)
[32]   Existence of symmetric solutions for singular semilinear elliptic systems with critical Hardy-Sobolev exponents [J].
Deng, Zhiying ;
Huang, Yisheng .
NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2013, 14 (01) :613-625
[33]   Existence and multiplicity of solutions for semilinear elliptic equations with critical weighted Hardy-Sobolev exponents [J].
Huang, Li ;
Wu, Xing-Ping ;
Tang, Chun-Lei .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2009, 71 (5-6) :1916-1924
[34]   Regularity of General Maximal and Minimal Functions [J].
Li, Jing ;
Liu, Feng .
MEDITERRANEAN JOURNAL OF MATHEMATICS, 2023, 20 (05)
[35]   Existence and multiplicity results for parameter Kirchhoff double phase problem with Hardy-Sobolev exponents [J].
Cheng, Yu ;
Bai, Zhanbing .
JOURNAL OF MATHEMATICAL PHYSICS, 2024, 65 (01)
[36]   Sobolev regularity for a class of local fractional new maximal operators [J].
Li, Rui ;
Tao, Shuangping .
GEORGIAN MATHEMATICAL JOURNAL, 2025, 32 (01) :123-134
[37]   OPTIMAL ERROR ESTIMATES FOR CHEBYSHEV APPROXIMATIONS OF FUNCTIONS WITH LIMITED REGULARITY IN FRACTIONAL SOBOLEV-TYPE SPACES [J].
Liu, Wenjie ;
Wang, Li-Lian ;
Li, Huiyuan .
MATHEMATICS OF COMPUTATION, 2019, 88 (320) :2857-2895
[38]   Symmetric solutions for singular quasilinear elliptic systems involving multiple critical Hardy-Sobolev exponents [J].
Deng, Zhiying ;
Huang, Yisheng .
BOUNDARY VALUE PROBLEMS, 2015,
[39]   Best constant and Mountain-Pass solutions for a supercritical Hardy-Sobolev problem in the presence of symmetries [J].
Mesmar, Hussein .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2023, 527 (02)
[40]   Symmetry of positive solutions of fractional Laplacian equation and system with Hardy-Sobolev exponent on the unit ball [J].
Zhao, Junping ;
Dou, Jingbo ;
Zhou, Huaiyu .
JOURNAL OF PSEUDO-DIFFERENTIAL OPERATORS AND APPLICATIONS, 2015, 6 (04) :503-519