Regularity of maximal functions on Hardy-Sobolev spaces

被引:13
作者
Perez, Carlos [1 ,2 ]
Picon, Tiago [3 ]
Saari, Olli [4 ]
Sousa, Mateus [5 ]
机构
[1] Univ Basque Country, UPV EHU, Dept Matemat, IKERBASQUE,Basque Fdn Sci, Bilbao, Spain
[2] BCAM, Bilbao, Spain
[3] Univ Sao Paulo, Fac Filosofia Ciencias & Letras Ribeirao Preto, Dept Comp & Matemat, Ave Bandeirantes 3900, BR-1404040 Ribeirao Preto, Brazil
[4] Univ Bonn, Inst Math, Endenicher Allee 60, D-53115 Bonn, Germany
[5] IMPA, BR-22460320 Rio De Janeiro, RJ, Brazil
基金
芬兰科学院;
关键词
SELF-IMPROVING PROPERTIES; INEQUALITIES; OPERATOR; VERSION;
D O I
10.1112/blms.12195
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove that maximal operators of convolution type associated to smooth kernels are bounded in the homogeneous Hardy-Sobolev spaces (H) over dot(1,p)(R-d) when p>d/(d+1). This range of exponents is sharp. As a by-product of the proof, we obtain similar results for the local Hardy-Sobolev spaces (h) over dot(1,p)(R-d) in the same range of exponents.
引用
收藏
页码:1007 / 1015
页数:9
相关论文
共 50 条
[21]   Infinitely many solutions for a Hardy-Sobolev equation involving critical growth [J].
Peng, Shuangjie ;
Wang, Chunhua .
MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2015, 38 (02) :197-220
[22]   Hardy Spaces and Heat Kernel Regularity [J].
Devyver, Baptiste .
POTENTIAL ANALYSIS, 2018, 48 (01) :1-33
[23]   CONTINUITY OF THE MAXIMAL COMMUTATORS IN SOBOLEV SPACES [J].
Jiang, Xixi ;
Liu, Feng .
JOURNAL OF THE KOREAN MATHEMATICAL SOCIETY, 2024, 61 (03) :461-494
[24]   Positive solutions for semilinear elliptic equations with critical weighted Hardy-Sobolev exponents [J].
Liu, Hai-Yan ;
Tang, Chun-Lei .
BULLETIN OF THE BELGIAN MATHEMATICAL SOCIETY-SIMON STEVIN, 2015, 22 (04) :611-631
[25]   Endpoint Sobolev regularity of higher order maximal commutators [J].
Liu, Feng ;
Ma, Yuan .
BANACH JOURNAL OF MATHEMATICAL ANALYSIS, 2023, 17 (04)
[26]   Hardy-Sobolev equation on compact Riemannian manifolds involving p-Laplacian [J].
Chen, Nanbo ;
Liu, Xiaochun .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2020, 487 (02)
[27]   INFLUENCE OF MEAN CURVATURE ON MOUNTAIN-PASS SOLUTIONS FOR HARDY-SOBOLEV EQUATIONS [J].
Jaber, Hassan .
ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 2019, 49 (02) :505-519
[28]   Solutions of singular semilinear elliptic equations with critical weighted Hardy-Sobolev exponents [J].
Du, Qi-Wu ;
Tang, Chun-Lei .
ANNALES POLONICI MATHEMATICI, 2014, 110 (02) :109-121
[29]   Sobolev type inequalities for fractional maximal functions and Riesz potentials in Morrey spaces of variable exponent on half spaces [J].
Mizuta, Yoshihiro ;
Shimomura, Tetsu .
CZECHOSLOVAK MATHEMATICAL JOURNAL, 2023, 73 (04) :1201-1217
[30]   CONTINUITY OF THE MULTILINEAR MAXIMAL COMMUTATORS IN SOBOLEV SPACES [J].
Jiang, Xixi ;
Liu, Feng .
JOURNAL OF APPLIED ANALYSIS AND COMPUTATION, 2024, 14 (03) :1674-1697