Regularity of maximal functions on Hardy-Sobolev spaces

被引:12
|
作者
Perez, Carlos [1 ,2 ]
Picon, Tiago [3 ]
Saari, Olli [4 ]
Sousa, Mateus [5 ]
机构
[1] Univ Basque Country, UPV EHU, Dept Matemat, IKERBASQUE,Basque Fdn Sci, Bilbao, Spain
[2] BCAM, Bilbao, Spain
[3] Univ Sao Paulo, Fac Filosofia Ciencias & Letras Ribeirao Preto, Dept Comp & Matemat, Ave Bandeirantes 3900, BR-1404040 Ribeirao Preto, Brazil
[4] Univ Bonn, Inst Math, Endenicher Allee 60, D-53115 Bonn, Germany
[5] IMPA, BR-22460320 Rio De Janeiro, RJ, Brazil
基金
芬兰科学院;
关键词
SELF-IMPROVING PROPERTIES; INEQUALITIES; OPERATOR; VERSION;
D O I
10.1112/blms.12195
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove that maximal operators of convolution type associated to smooth kernels are bounded in the homogeneous Hardy-Sobolev spaces (H) over dot(1,p)(R-d) when p>d/(d+1). This range of exponents is sharp. As a by-product of the proof, we obtain similar results for the local Hardy-Sobolev spaces (h) over dot(1,p)(R-d) in the same range of exponents.
引用
收藏
页码:1007 / 1015
页数:9
相关论文
共 50 条
  • [1] HARDY-SOBOLEV SPACES AND MAXIMAL FUNCTIONS
    MIYACHI, A
    JOURNAL OF THE MATHEMATICAL SOCIETY OF JAPAN, 1990, 42 (01) : 73 - 90
  • [2] Maximal characterization of Hardy-Sobolev spaces on manifolds
    Badr, N.
    Dafni, G.
    CONCENTRATION, FUNCTIONAL INEQUALITIES AND ISOPERIMETRY, 2011, 545 : 13 - +
  • [3] BOUNDARY-REGULARITY FOR HARMONIC HARDY-SOBOLEV SPACES
    BEATROUS, F
    BURBEA, J
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 1989, 39 : 160 - 174
  • [4] Inner functions in certain Hardy-Sobolev spaces
    Grohn, Janne
    Nicolau, Artur
    JOURNAL OF FUNCTIONAL ANALYSIS, 2017, 272 (06) : 2463 - 2486
  • [5] On multipliers for Hardy-Sobolev spaces
    Beatrous, Frank
    Burbea, Jacob
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2008, 136 (06) : 2125 - 2133
  • [6] Hardy-Sobolev spaces and their multipliers
    Cao GuangFu
    He Li
    SCIENCE CHINA-MATHEMATICS, 2014, 57 (11) : 2361 - 2368
  • [7] Hardy-Sobolev spaces and their multipliers
    GuangFu Cao
    Li He
    Science China Mathematics, 2014, 57 : 2361 - 2368
  • [8] Multipliers in Hardy-Sobolev Spaces
    Joaquín M. Ortega
    Joan Fàbrega
    Integral Equations and Operator Theory, 2006, 55 : 535 - 560
  • [9] Multipliers in Hardy-Sobolev spaces
    Ortega, Joaquin M.
    Fabrega, Joan
    INTEGRAL EQUATIONS AND OPERATOR THEORY, 2006, 55 (04) : 535 - 560
  • [10] Hardy-Sobolev spaces and their multipliers
    CAO GuangFu
    HE Li
    Science China(Mathematics), 2014, 57 (11) : 2361 - 2368