Contextuality as a Resource for Models of Quantum Computation with Qubits

被引:94
作者
Bermejo-Vega, Juan [1 ,2 ]
Delfosse, Nicolas [3 ,4 ]
Browne, Dan E. [5 ]
Okay, Cihan [6 ]
Raussendorf, Robert [7 ]
机构
[1] Free Univ Berlin, Dahlem Ctr Complex Quantum Syst, D-14195 Berlin, Germany
[2] Max Planck Inst Quantum Opt, Div Theory, D-85748 Garching, Germany
[3] CALTECH, Inst Quantum Informat & Matter, Pasadena, CA 91125 USA
[4] Univ Calif Riverside, Dept Phys & Astron, Riverside, CA 92521 USA
[5] UCL, Dept Phys & Astron, Gower St, London WC1E 6BT, England
[6] Univ Western Ontario, Dept Math, London, ON N6A 5B7, Canada
[7] Univ British Columbia, Dept Phys & Astron, Vancouver, BC V6T 1Z1, Canada
基金
美国国家科学基金会; 加拿大自然科学与工程研究理事会; 欧盟地平线“2020”;
关键词
NORMALIZER CIRCUITS; ENTANGLEMENT;
D O I
10.1103/PhysRevLett.119.120505
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
A central question in quantum computation is to identify the resources that are responsible for quantum speed-up. Quantum contextuality has been recently shown to be a resource for quantum computation with magic states for odd-prime dimensional qudits and two-dimensional systems with real wave functions. The phenomenon of state-independent contextuality poses a priori an obstruction to characterizing the case of regular qubits, the fundamental building block of quantum computation. Here, we establish contextuality of magic states as a necessary resource for a large class of quantum computation schemes on qubits. We illustrate our result with a concrete scheme related to measurement-based quantum computation.
引用
收藏
页数:5
相关论文
共 20 条
[1]  
[Anonymous], ARXIV14094800
[2]  
[Anonymous], ARXIV150905806
[3]  
Bermejo-Vega J, 2016, QUANTUM INF COMPUT, V16, P361
[4]  
Bermejo-Vega J, 2014, QUANTUM INF COMPUT, V14, P181
[5]   Universal quantum computation with ideal Clifford gates and noisy ancillas [J].
Bravyi, S ;
Kitaev, A .
PHYSICAL REVIEW A, 2005, 71 (02)
[6]  
Delfosse N., ARXIV161007093
[7]   Wigner Function Negativity and Contextuality in Quantum Computation on Rebits [J].
Delfosse, Nicolas ;
Guerin, Philippe Allard ;
Bian, Jacob ;
Raussendorf, Robert .
PHYSICAL REVIEW X, 2015, 5 (02)
[8]   Theory of fault-tolerant quantum computation [J].
Gottesman, D .
PHYSICAL REVIEW A, 1998, 57 (01) :127-137
[9]  
Gottesman D., 1997, THESIS
[10]  
Gottesman D., 1998, 1 NASA INT C QUANT C