Existence and uniqueness of nontrivial solution for nonlinear fractional multi-point boundary value problem with a parameter

被引:0
作者
Sang, Yanbin [1 ]
He, Luxuan [1 ]
机构
[1] North Univ China, Sch Sci, Dept Math, Taiyuan, Peoples R China
关键词
Nonhomogeneous boundary condition; Mixed monotone operator; Iterative solution; Partial order structure; POSITIVE SOLUTIONS; DIFFERENTIAL-EQUATION;
D O I
10.1186/s13662-020-2518-1
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, a class of fractional boundary value problems with a parameter are discussed. We give some sufficient conditions to guarantee that above problems have a unique solution and construct the corresponding iterative sequences for approximating the unique solution.
引用
收藏
页数:17
相关论文
共 32 条
[1]   Existence and Uniqueness of Positive Solutions for Boundary Value Problems of Fractional Differential Equations [J].
Afshari, Hojjat ;
Marasi, Hamidreza ;
Aydi, Hassen .
FILOMAT, 2017, 31 (09) :2675-2682
[2]   Positive solutions for boundary value problem of nonlinear fractional differential equation [J].
Bai, ZB ;
Lü, HS .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2005, 311 (02) :495-505
[3]   Existence of positive solutions for the nonlinear elastic beam equation via a mixed monotone operator [J].
Cabrera, I. J. ;
Lopez, B. ;
Sadarangani, K. .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2018, 327 :306-313
[4]   Existence of a positive solution to a class of fractional differential equations [J].
Goodrich, Christopher S. .
APPLIED MATHEMATICS LETTERS, 2010, 23 (09) :1050-1055
[5]  
Graef J. R., 2007, COMMUN APPL NONLINEA, V14, P61
[6]   Positive solutions for a class of higher order boundary value problems with fractional q-derivatives [J].
Graef, John R. ;
Kong, Lingju .
APPLIED MATHEMATICS AND COMPUTATION, 2012, 218 (19) :9682-9689
[7]  
Guo D., 1988, NONLINEAR PROBLEMS A
[8]  
Guo D., 2000, Partial Order Method in Nonlinear Analysis
[9]  
JIA M, 2014, ABSTR APPL ANAL, V2014
[10]   Existence of positive solutions to an arbitrary order fractional differential equation via a mixed monotone operator method [J].
Jleli, Mohamed ;
Samet, Bessem .
NONLINEAR ANALYSIS-MODELLING AND CONTROL, 2015, 20 (03) :367-376