Compiling quantum algorithms for architectures with multi-qubit gates

被引:66
作者
Martinez, Esteban A. [1 ]
Monz, Thomas [1 ]
Nigg, Daniel [1 ]
Schindler, Philipp [1 ]
Blatt, Rainer [1 ,2 ]
机构
[1] Univ Innsbruck, Inst Expt Phys, Technikerstr 25-4, A-6020 Innsbruck, Austria
[2] Austrian Acad Sci, Inst Quantenopt & Quanteninformat, Technikerstr 21a, A-6020 Innsbruck, Austria
基金
奥地利科学基金会;
关键词
quantum algorithms; quantum compiler; many-qubit entangling gates; Molmer-Sorensen gates; trapped-ion quantum computing; SIMULATIONS;
D O I
10.1088/1367-2630/18/6/063029
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In recent years, small-scale quantum information processors have been realized in multiple physical architectures. These systems provide a universal set of gates that allow one to implement any given unitary operation. The decomposition of a particular algorithm into a sequence of these available gates is not unique. Thus, the fidelity of the implementation of an algorithm can be increased by choosing an optimized decomposition into available gates. Here, we present a method to find such a decomposition, where a small-scale ion trap quantum information processor is used as an example. We demonstrate a numerical optimization protocol that minimizes the number of required multi-qubit entangling gates by design. Furthermore, we adapt the method for state preparation, and quantum algorithms including in-sequence measurements.
引用
收藏
页数:13
相关论文
共 32 条
[1]  
[Anonymous], 1999, SPRINGER SCI
[2]  
Ballance C. J., 2015, ARXIV151204600
[3]  
Blatt R, 2012, NAT PHYS, V8, P277, DOI [10.1038/NPHYS2252, 10.1038/nphys2252]
[4]  
Bloch I, 2012, NAT PHYS, V8, P267, DOI [10.1038/nphys2259, 10.1038/NPHYS2259]
[5]   Goals and opportunities in quantum simulation [J].
Cirac, J. Ignacio ;
Zoller, Peter .
NATURE PHYSICS, 2012, 8 (04) :264-266
[6]  
Debnath S, 2016, ARXIV160304512
[7]   Quantum data hiding [J].
DiVincenzo, DP ;
Leung, DW ;
Terhal, BM .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2002, 48 (03) :580-598
[8]   2-BIT GATES ARE UNIVERSAL FOR QUANTUM COMPUTATION [J].
DIVINCENZO, DP .
PHYSICAL REVIEW A, 1995, 51 (02) :1015-1022
[9]   Quantum computation and Shor's factoring algorithm [J].
Ekert, A ;
Jozsa, R .
REVIEWS OF MODERN PHYSICS, 1996, 68 (03) :733-753
[10]   Randomized Benchmarking of Multiqubit Gates [J].
Gaebler, J. P. ;
Meier, A. M. ;
Tan, T. R. ;
Bowler, R. ;
Lin, Y. ;
Hanneke, D. ;
Jost, J. D. ;
Home, J. P. ;
Knill, E. ;
Leibfried, D. ;
Wineland, D. J. .
PHYSICAL REVIEW LETTERS, 2012, 108 (26)