MATRIX ESTIMATION BY UNIVERSAL SINGULAR VALUE THRESHOLDING

被引:278
作者
Chatterjee, Sourav [1 ]
机构
[1] Stanford Univ, Dept Stat, Stanford, CA 94305 USA
关键词
Matrix completion; matrix estimation; sochastic blockmodel; latent space model; distance matrix; covariance matrix; singular value decomposition; low rank matrices; graphons; STOCHASTIC BLOCKMODELS; COMPLETION; GRAPHS; ALGORITHMS; MODEL; PENALIZATION; PREDICTION; NUMBER; NORM;
D O I
10.1214/14-AOS1272
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Consider the problem of estimating the entries of a large matrix, when the observed entries are noisy versions of a small random fraction of the original entries. This problem has received widespread attention in recent times, especially after the pioneering works of Emmanuel Candes and collaborators. This paper introduces a simple estimation procedure, called Universal Singular Value Thresholding (USVT), that works for any matrix that has "a little bit of structure." Surprisingly, this simple estimator achieves the minimax error rate up to a constant factor. The method is applied to solve problems related to low rank matrix estimation, blockmodels, distance matrix completion, latent space models, positive definite matrix completion, graphon estimation and generalized Bradley Terry models for pairwise comparison.
引用
收藏
页码:177 / 214
页数:38
相关论文
共 98 条
[1]  
Achlioptas D., 2001, P 30 P 3 ANN ACM S T, P611, DOI 10.1145/380752.380858
[2]   Bayesian analysis of linear dominance hierarchies [J].
Adams, ES .
ANIMAL BEHAVIOUR, 2005, 69 :1191-1201
[3]  
Agresti A., 1990, CATEGORICAL DATA ANA
[4]  
Airoldi EM, 2008, J MACH LEARN RES, V9, P1981
[5]   REPRESENTATIONS FOR PARTIALLY EXCHANGEABLE ARRAYS OF RANDOM-VARIABLES [J].
ALDOUS, DJ .
JOURNAL OF MULTIVARIATE ANALYSIS, 1981, 11 (04) :581-598
[6]   Solving Euclidean distance matrix completion problems via semidefinite programming [J].
Alfakih, AY ;
Khandani, A ;
Wolkowicz, H .
COMPUTATIONAL OPTIMIZATION AND APPLICATIONS, 1999, 12 (1-3) :13-30
[7]   PSEUDO-LIKELIHOOD METHODS FOR COMMUNITY DETECTION IN LARGE SPARSE NETWORKS [J].
Amini, Arash A. ;
Chen, Aiyou ;
Bickel, Peter J. ;
Levina, Elizaveta .
ANNALS OF STATISTICS, 2013, 41 (04) :2097-2122
[8]  
Anderson G. W., 2010, CAMBRIDGE STUDIES AD, V118, DOI DOI 10.1017/CBO9780511801334
[9]  
[Anonymous], PREPRINT
[10]  
[Anonymous], 1990, Matrix theory and applications