Highly reactive and stable nanoscale zero-valent iron prepared within vesicles and its high-performance removal of water pollutants

被引:40
|
作者
Shi, Dongyang [1 ,2 ]
Zhang, Xia [1 ]
Wang, Jianji [1 ]
Fan, Jing [1 ]
机构
[1] Henan Normal Univ, Sch Environm, Henan Key Lab Environm Pollut Control,Minist Educ, Key Lab Yellow River & Huai River Water Environm, Xinxiang 453007, Henan, Peoples R China
[2] Henan Inst Technol, Xinxiang 453003, Henan, Peoples R China
基金
中国国家自然科学基金;
关键词
Nanoscale zero-valent iron; Vesicles; Self-assembly; Reactivity; Stability; BLOCK-COPOLYMER MICELLES; ZEROVALENT IRON; AQUEOUS-SOLUTION; HEXAVALENT CHROMIUM; COLLOIDAL STABILITY; DIBLOCK COPOLYMERS; CR(VI) REMOVAL; HUMIC-ACID; REDUCTION; NANOPARTICLES;
D O I
10.1016/j.apcatb.2017.09.057
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Nanoscale zero-valent iron particles have large specific surface area and high reaction activity, and have been increasingly used for the degradation of environmental contaminants. However, rapid aggregation and deactivation hinder their wide applications. In this work, nanoscale zero-valent iron (NZVI) particles were prepared in vesicles, which were formed by self-assembly of amphiphilic block copolymer poly(1-vinylpyrrolidone-co-vinylacetate) (PVV) in aqueous tetrahydrofuran medium, and characterized with the aid of XRD, FTIR, SEM-EDX, TEM, XPS and DLS techniques. It was found that the NZVI particles were well encapsulated in the vesicles, and they could be stored directly in the air as solids, but the dried NZVI particles could be easily released from the vesicles once they were put in water. These NZVI particles showed some unique features, such as uniform nanometer size distribution (from 70 to 100 nm), vesicle-like morphology, and good dispersion. Activity and stability of the NZVI in vesicles were examined by using Cr(VI) and nitrobenzene as the model pollutants, and compared with the bare NZVI particles synthesized with the same procedures but without PVV. A dramatic difference in activity and stability was observed for the two different NZVI particles. The NZVI in vesicles showed a good chemical stability in the air, and still maintained its high reactivity in water. Such excellent performance might be attributed to the encapsulation of the NZVI by vesicles, which could impede well the strong agglomeration of metal particles in water and prevent metal particles from being oxidized in the air.
引用
收藏
页码:610 / 617
页数:8
相关论文
共 50 条
  • [1] Removal of water pollutants using plant-based nanoscale zero-valent iron: a review
    Kheskwani, Urvashi
    Ahammed, Mansoor
    WATER SCIENCE AND TECHNOLOGY, 2023, 88 (05) : 1207 - 1231
  • [2] Decorating of ultra small and recyclable nanoscale zero-valent iron on NH2-SiO2 for enhanced high-performance removal of water pollutants
    Shi, Dongyang
    Zhu, Guifen
    Zhang, Xia
    Cheng, Meng
    Wu, Tian
    Zhang, Kaige
    Fan, Jing
    JOURNAL OF ALLOYS AND COMPOUNDS, 2019, 782 : 183 - 192
  • [3] Research Progress of Aqueous Pollutants Removal by Sulfidated Nanoscale Zero-valent Iron
    Tang Jiang
    Tang Lin
    Feng Haopeng
    Dong Haoran
    Zhang Yi
    Liu Sishi
    Zeng Guangming
    ACTA CHIMICA SINICA, 2017, 75 (06) : 575 - 582
  • [4] Removal of lead and chromium ions in water by nanoscale zero-valent iron
    Zhang S.-Q.
    Cen J.
    Lyu D.-Y.
    Yao N.
    Gao Xiao Hua Xue Gong Cheng Xue Bao/Journal of Chemical Engineering of Chinese Universities, 2019, 33 (03): : 524 - 532
  • [5] Removal of organic compounds by nanoscale zero-valent iron and its composites
    Li, Qian
    Chen, Zhongshan
    Wang, Huihui
    Yang, Hui
    Wen, Tao
    Wang, Shuqin
    Hu, Baowei
    Wang, Xiangke
    Chen, Zhongshan (zschen@ncepu.edu.cn); Hu, Baowei (hbw@usx.edu.cn), 1600, Elsevier B.V. (792):
  • [6] Performance of bimetallic nanoscale zero-valent iron particles for removal of oxytetracycline
    Yuwei Wu
    Qinyan Yue
    Yuan Gao
    Zhongfei Ren
    Baoyu Gao
    Journal of Environmental Sciences, 2018, (07) : 173 - 182
  • [7] Performance of bimetallic nanoscale zero-valent iron particles for removal of oxytetracycline
    Wu, Yuwei
    Yue, Qinyan
    Gao, Yuan
    Ren, Zhongfei
    Gao, Baoyu
    JOURNAL OF ENVIRONMENTAL SCIENCES, 2018, 69 : 173 - 182
  • [8] Removal of organic compounds by nanoscale zero-valent iron and its composites
    Li, Qian
    Chen, Zhongshan
    Wang, Huihui
    Yang, Hui
    Wen, Tao
    Wang, Shuqin
    Hu, Baowei
    Wang, Xiangke
    SCIENCE OF THE TOTAL ENVIRONMENT, 2021, 792
  • [9] Performance and Mechanism of Aqueous Arsenic Removal with Nanoscale Zero-Valent Iron
    Li, Meirong
    Tang, Chenliu
    Zhang, Weixian
    Ling, Lan
    PROGRESS IN CHEMISTRY, 2022, 34 (04) : 846 - 856
  • [10] Nanoscale zero-valent iron supported on biochar for the highly efficient removal of nitrobenzene
    Gaoling Wei
    Jinhua Zhang
    Jinqiu Luo
    Huajian Xue
    Deyin Huang
    Zhiyang Cheng
    Xinbai Jiang
    Frontiers of Environmental Science & Engineering, 2019, 13