A Legendre spectral Galerkin method for the biharmonic Dirichlet problem

被引:0
|
作者
Bialecki, B [1 ]
Karageorghis, A
机构
[1] Colorado Sch Mines, Dept Math & Comp Sci, Golden, CO 80401 USA
[2] Univ Cyprus, Dept Math & Stat, CY-1678 Nicosia, Cyprus
来源
SIAM JOURNAL ON SCIENTIFIC COMPUTING | 2000年 / 22卷 / 05期
关键词
biharmonic Dirichlet problem; spectral Galerkin method; Schur complement matrix; preconditioned conjugate gradient method; Cholesky method;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A Legendre spectral Galerkin method is presented for the solution of the biharmonic Dirichlet problem on a square. The solution and its Laplacian are approximated using the set of basis functions suggested by Shen, which are linear combinations of two Legendre polynomials. A Schur complement approach is used to reduce the resulting linear system to one involving the approximation of the Laplacian of the solution on the two vertical sides of the square. The Schur complement system is solved by a preconditioned conjugate gradient method or the Cholesky method. The total cost of the algorithm is O(N-3). Numerical results demonstrate the spectral convergence of the method.
引用
收藏
页码:1549 / 1569
页数:21
相关论文
共 50 条
  • [1] A Legendre spectral Galerkin method for the biharmonic Dirichlet problem
    Bialecki, B.
    Karageorghis, A.
    2001, Society for Industrial and Applied Mathematics Publications (22):
  • [2] A legendre spectral collocation method for the biharmonic Dirichlet problem
    Bialecki, B
    Karageorghis, A
    ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2000, 34 (03): : 637 - 662
  • [3] Legendre-Galerkin spectral-element method for the biharmonic equations and its applications
    Zhuang, Qingqu
    Chen, Lizhen
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2017, 74 (12) : 2958 - 2968
  • [4] Discontinuous Galerkin Method for Dirichlet Boundary Control Problem Governed by Biharmonic Operator
    Garg, Divay
    Porwal, Kamana
    JOURNAL OF SCIENTIFIC COMPUTING, 2025, 103 (01)
  • [5] GALERKIN METHOD FOR A NONLINEAR DIRICHLET PROBLEM
    DOUGLAS, J
    DUPONT, T
    MATHEMATICS OF COMPUTATION, 1975, 29 (131) : 689 - 696
  • [6] A Legendre Galerkin spectral method for optimal control problems
    Chen, Yanping
    Xia, Nianshi
    Yi, Nianyu
    JOURNAL OF SYSTEMS SCIENCE & COMPLEXITY, 2011, 24 (04) : 663 - 671
  • [7] A LEGENDRE GALERKIN SPECTRAL METHOD FOR OPTIMAL CONTROL PROBLEMS
    Yanping CHEN School of Mathematical Sciences
    School of Mathematics and Computational Science
    JournalofSystemsScience&Complexity, 2011, 24 (04) : 663 - 671
  • [8] A Legendre Galerkin spectral method for optimal control problems
    Yanping Chen
    Nianshi Xia
    Nianyu Yi
    Journal of Systems Science and Complexity, 2011, 24 : 663 - 671
  • [9] A DISCONTINUOUS GALERKIN METHOD BY PATCH RECONSTRUCTION FOR BIHARMONIC PROBLEM
    Li, Ruo
    Ming, Pingbing
    Sun, Zhiyuan
    Yang, Fanyi
    Yang, Zhijian
    JOURNAL OF COMPUTATIONAL MATHEMATICS, 2019, 37 (04) : 524 - 540
  • [10] A quadratic spline collocation method for the Dirichlet biharmonic problem
    Bialecki, Bernard
    Fairweather, Graeme
    Karageorghis, Andreas
    Maack, Jonathan
    NUMERICAL ALGORITHMS, 2020, 83 (01) : 165 - 199