Real-Time Lane Detection Based on Deep Learning

被引:9
|
作者
Baek, Sun-Woo [1 ]
Kim, Myeong-Jun [1 ]
Suddamalla, Upendra [2 ]
Wong, Anthony [2 ]
Lee, Bang-Hyon [2 ]
Kim, Jung-Ha [3 ]
机构
[1] Kookmin Univ, Grad Sch Automot Engn, Seoul, South Korea
[2] Moovita Pte Ltd, Singapore, Singapore
[3] Kookmin Univ, Dept Automot Engn, Seoul, South Korea
关键词
Deep learning; Lane detection; Machine vision; Multitask learning; Perspective loss;
D O I
10.1007/s42835-021-00902-6
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
As the research and development of autonomous vehicles has become more active, lane detection technologies for providing road information have become key elements. There are limits to detecting lanes in dynamic driving environments in conventional machine vision research, as the approaches are generally dependent on expert scenarios and fine-tuned heuristics. Deep learning has shown good performance in classifying target information with this distribution of nonlinear data; thus, many studies have actively applied deep learning to lane detection. However, most of these studies have focused on improving the accuracy, rather than on the operating speed. For the work reported herein, a benchmarking deep-learning framework for lane detection was applied with lightened feature extraction modules and decoder modules. These were used to compare performances and to present an indicator for selecting a model for optimizing real-time performance and accuracy. The VGG-16, MobileNet, and ShuffleNet networks were used for the encoder module, whereas frontend dilation and UNet were used for the decoder module. The limitations of the benchmarking framework were analyzed, and perspective loss concepts were applied to the processing of the network using front-view images to ensure improvements in the accuracy and operating speed. All of the candidate networks obtained objective performance indicators based on a large-scale benchmark dataset (TuSimple) and network training with a dataset collected and verified via performance on public roads in Singapore.
引用
收藏
页码:655 / 664
页数:10
相关论文
共 50 条
  • [21] Real-time lane detection for autonomous vehicle
    Jeong, SG
    Kim, CS
    Lee, DY
    Ha, SK
    Lee, DH
    Lee, MH
    Hashimoto, H
    ISIE 2001: IEEE INTERNATIONAL SYMPOSIUM ON INDUSTRIAL ELECTRONICS PROCEEDINGS, VOLS I-III, 2001, : 1466 - 1471
  • [22] Real-time lane detection for autonomous navigation
    Jeong, SG
    Kim, CS
    Yoon, KS
    Lee, JN
    Bae, JI
    Lee, MH
    2001 IEEE INTELLIGENT TRANSPORTATION SYSTEMS - PROCEEDINGS, 2001, : 508 - 513
  • [23] Real-time Quadrilateral Object Corner Detection Algorithm Based on Deep Learning
    Zhang, Jinfeng
    Jiao, Zhibin
    An, Xiangjing
    He, Yejun
    2019 COMPUTING, COMMUNICATIONS AND IOT APPLICATIONS (COMCOMAP), 2019, : 70 - 75
  • [24] Deep Learning-Based Real-time Object Detection in Inland Navigation
    Hammedi, Wided
    Ramirez-Martinez, Metzli
    Brunet, Philippe
    Senouci, Sidi Mohammed
    Messous, Mohamed Ayoub
    2019 IEEE GLOBAL COMMUNICATIONS CONFERENCE (GLOBECOM), 2019,
  • [25] Real-time detection method of surface floating objects based on deep learning
    Zou Shanhua
    Peng Li
    Fang Ning-sheng
    2020 19TH INTERNATIONAL SYMPOSIUM ON DISTRIBUTED COMPUTING AND APPLICATIONS FOR BUSINESS ENGINEERING AND SCIENCE (DCABES 2020), 2020, : 174 - 177
  • [26] Jellytoring: Real-Time Jellyfish Monitoring Based on Deep Learning Object Detection
    Martin-Abadal, Miguel
    Ruiz-Frau, Ana
    Hinz, Hilmar
    Gonzalez-Cid, Yolanda
    SENSORS, 2020, 20 (06)
  • [27] Real-Time Pedestrian Detection for Driver Assistance Systems Based on Deep Learning
    Gong, Zhenfei
    Wang, Xinyu
    Tao, Wenbing
    TENTH INTERNATIONAL CONFERENCE ON DIGITAL IMAGE PROCESSING (ICDIP 2018), 2018, 10806
  • [28] Deep learning based real-time tourist spots detection and recognition mechanism
    Chen, Yen-Chiu
    Yu, Kun-Ming
    Kao, Tzu-Hsiang
    Hsieh, Hao-Lun
    SCIENCE PROGRESS, 2021, 104
  • [29] Real-Time Survivor Detection in UAV Thermal Imagery Based on Deep Learning
    Dong, Jiong
    Ota, Kaoru
    Dong, Mianxiong
    2020 16TH INTERNATIONAL CONFERENCE ON MOBILITY, SENSING AND NETWORKING (MSN 2020), 2020, : 352 - 359
  • [30] A Survey on Deep-Learning-Based Real-Time SAR Ship Detection
    Li, Jianwei
    Chen, Jie
    Cheng, Pu
    Yu, Zhentao
    Yu, Lu
    Chi, Cheng
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2023, 16 : 3218 - 3247