Fixed parameter tractability of a biconnected bottleneck Steiner network problem

被引:0
作者
Ras, Charl J. [1 ]
机构
[1] Univ Melbourne, Sch Math & Stat, Melbourne, Vic, Australia
关键词
2-connectivity; approximation algorithms; biconnected network; bottleneck Steiner network; fixed parameter tractability; geometric network; ALGORITHMS;
D O I
10.1002/net.21926
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
For a given set X of points in the plane, we consider the problem of constructing a 2-vertex-connected network spanning X and at most k additional Steiner points such that the length of the longest edge (the so-called bottleneck) of the network is minimized. When one introduces a constraint on the network specifying that all Steiner points must be of degree 2 the problem remains NP-complete but becomes fixed parameter tractable with respect to k. We prove this by presenting an algorithm which solves the degree-2 bounded problem optimally in a time of O(n(4)k(6)2(k)), where n = |X|. We also present a simple 3-approximation algorithm for the degree-2 bounded problem and show that the bottleneck length of an optimal solution to the degree-2 bounded problem is at most twice the bottleneck length when degree is not bounded.
引用
收藏
页码:310 / 320
页数:11
相关论文
共 17 条
[1]   The Euclidean Bottleneck Steiner Path Problem and Other Applications of (α,β)-Pair Decomposition [J].
Abu-Affash, A. Karim ;
Carmi, Paz ;
Katz, Matthew J. ;
Segal, Michael .
DISCRETE & COMPUTATIONAL GEOMETRY, 2014, 51 (01) :1-23
[2]   PERFORMANCE GUARANTEES FOR APPROXIMATION ALGORITHMS DEPENDING ON PARAMETRIZED TRIANGLE INEQUALITIES [J].
ANDREAE, T ;
BANDELT, HJ .
SIAM JOURNAL ON DISCRETE MATHEMATICS, 1995, 8 (01) :1-16
[3]  
Bae SW, 2009, LECT NOTES COMPUT SC, V5878, P24
[4]   An exact algorithm for the bottleneck 2-connected k-Steiner network problem in Lp planes [J].
Brazil, M. ;
Ras, C. J. ;
Thomas, D. A. .
DISCRETE APPLIED MATHEMATICS, 2016, 201 :47-69
[5]   The bottleneck 2-connected k-Steiner network problem for k ≤ 2 [J].
Brazil, M. ;
Ras, C. J. ;
Thomas, D. A. .
DISCRETE APPLIED MATHEMATICS, 2012, 160 (7-8) :1028-1038
[6]  
Brazil M., ARXIV190703474
[7]   SOLVING THE EUCLIDEAN BOTTLENECK BICONNECTED EDGE SUBGRAPH PROBLEM BY 2-RELATIVE NEIGHBORHOOD GRAPHS [J].
CHANG, MS ;
TANG, CY ;
LEE, RCT .
DISCRETE APPLIED MATHEMATICS, 1992, 39 (01) :1-12
[8]  
DIRAC GA, 1967, J REINE ANGEW MATH, V228, P204
[9]  
Grotschel M., 1995, HDBK OPER R, V7, P617, DOI DOI 10.1016/S0927-0507(05)80127-6
[10]   Bounding component sizes of two-connected Steiner networks [J].
Hvam, K. ;
Reinhardt, L. ;
Winter, P. ;
Zachariasen, M. .
INFORMATION PROCESSING LETTERS, 2007, 104 (05) :159-163