Achieving Type I, II, and III Heterojunctions Using Functionalized MXene

被引:129
作者
Lee, Youngbin [1 ]
Hwang, Yubin [1 ]
Chung, Yong-Chae [1 ]
机构
[1] Hanyang Univ Seoul, Dept Mat Sci & Engn, Seoul 133791, South Korea
基金
新加坡国家研究基金会;
关键词
MXene; heterostructure; two-dimensional material; semiconductor; DFT; TRANSITION-METAL DICHALCOGENIDE; TOTAL-ENERGY CALCULATIONS; BAND-GAP; MAGNETIC-PROPERTIES; STRAIN; HETEROSTRUCTURES; CARBIDES; NANORIBBONS; COMPOSITES; DISULFIDES;
D O I
10.1021/acsami.5b00063
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
In the present work, type I, II, and III heterostructures are constructed with the same base material using three representative functionalized monolayer scandium carbides (Sc2CF2, Sc2C(OH)(2), and Sc2CO2) by first-principles calculations based on density functional theory. In contrast to general bilayer heterosystems composed of two-dimensional semiconductors, type I and III heterojunctions are obtained in one Sc2CF2/Sc2CO2 system and the remains of the functionalized Sc2C heterostructures, respectively. It is noteworthy that the same monolayer Sc2CF2 and Sc2CO2 constituents lead to dissimilar heterostructure types in the two Sc2CF2/Sc2CO2 systems by modifying the stacking interface. In addition, in the two Sc2CF2/Sc2CO2 systems, remarkable changes in the heterojunction type are induced by a strain, and two distinct type-II heterostructures are generated where one layer with the conduction band minimum state and the other layer including the valence band maximum level are different. The present work suggests an attractive direction to obtain all heterostructure types with the same base material for novel nanodevices in various fields such as photonics, electronics, and optoelectronics using only the two monolayer components Sc2CF2 and Sc2CO2.
引用
收藏
页码:7163 / 7169
页数:7
相关论文
共 51 条
[1]   Theoretical study of work function modification by organic molecule-derived linear nanostructure on H-silicon(100)-2 x 1 [J].
Anagaw, Arnsalu Y. ;
Wolkow, Robert A. ;
DiLabio, Gino A. .
JOURNAL OF PHYSICAL CHEMISTRY C, 2008, 112 (10) :3780-3784
[2]   Are we van der Waals ready? [J].
Bjorkman, T. ;
Gulans, A. ;
Krasheninnikov, A. V. ;
Nieminen, R. M. .
JOURNAL OF PHYSICS-CONDENSED MATTER, 2012, 24 (42)
[3]   van der Waals Bonding in Layered Compounds from Advanced Density-Functional First-Principles Calculations [J].
Bjorkman, T. ;
Gulans, A. ;
Krasheninnikov, A. V. ;
Nieminen, R. M. .
PHYSICAL REVIEW LETTERS, 2012, 108 (23)
[4]   First-principles study of structural and elastic properties of Sc2AC (A = Al, Ga, In, Tl) [J].
Bouhemadou, A. ;
Khenata, R. ;
Kharoubi, A. ;
Medkour, Y. .
SOLID STATE COMMUNICATIONS, 2008, 146 (3-4) :175-180
[5]   Improved Description of the Structure of Molecular and Layered Crystals: Ab Initio DFT Calculations with van der Waals Corrections [J].
Bucko, Tomas ;
Hafner, Juergen ;
Lebegue, Sebastien ;
Angyan, Janos G. .
JOURNAL OF PHYSICAL CHEMISTRY A, 2010, 114 (43) :11814-11824
[6]   Work function tuning of an ultrathin MgO film on an Ag substrate by generating oxygen impurities at the interface [J].
Cho, Sung Beom ;
Yun, Kyung-Han ;
Yoo, Dong Su ;
Ahn, Kiyong ;
Chung, Yong-Chae .
THIN SOLID FILMS, 2013, 544 :541-544
[7]   Strain-Induced Indirect to Direct Bandgap Transition in Multi layer WSe2 [J].
Desai, Sujay B. ;
Seol, Gyungseon ;
Kang, Jeong Seuk ;
Fang, Hui ;
Battaglia, Corsin ;
Kapadia, Rehan ;
Ager, Joel W. ;
Guo, Jing ;
Javey, Ali .
NANO LETTERS, 2014, 14 (08) :4592-4597
[8]   Ion Intercalation into Two-Dimensional Transition-Metal Carbides: Global Screening for New High-Capacity Battery Materials [J].
Eames, Christopher ;
Islam, M. Saiful .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2014, 136 (46) :16270-16276
[9]   Tunable MoS2 bandgap in MoS2-graphene heterostructures [J].
Ebnonnasir, Abbas ;
Narayanan, Badri ;
Kodambaka, Suneel ;
Ciobanu, Cristian V. .
APPLIED PHYSICS LETTERS, 2014, 105 (03)
[10]   Ti3C2 MXene as a High Capacity Electrode Material for Metal (Li, Na, K, Ca) Ion Batteries [J].
Er, Dequan ;
Li, Junwen ;
Naguib, Michael ;
Gogotsi, Yury ;
Shenoy, Vivek B. .
ACS APPLIED MATERIALS & INTERFACES, 2014, 6 (14) :11173-11179