DC models for spherical separation

被引:34
作者
Astorino, A. [1 ]
Fuduli, A. [2 ]
Gaudioso, M. [1 ]
机构
[1] Univ Calabria, Dipartimento Elettron Informat & Sistemist, Ist Calcolo & Reti Ad Alte Prestazioni CNR, I-87036 Arcavacata Di Rende, CS, Italy
[2] Univ Calabria, Dipartimento Matemat, I-87036 Arcavacata Di Rende, CS, Italy
关键词
Spherical separation; DC functions; DCA;
D O I
10.1007/s10898-010-9558-0
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
We propose two different approaches for spherical separation of two sets. Both methods are based on minimizing appropriate nonconvex nondifferentiable error functions, which can be both expressed in a DC (Difference of two Convex) form. We tackle the problem by adopting the DC-Algorithm. Some numerical results on classical binary datasets are reported.
引用
收藏
页码:657 / 669
页数:13
相关论文
共 19 条
[1]   The DC (difference of convex functions) programming and DCA revisited with DC models of real world nonconvex optimization problems [J].
An, LTH ;
Tao, PD .
ANNALS OF OPERATIONS RESEARCH, 2005, 133 (1-4) :23-46
[2]  
[Anonymous], 2004, KERNEL METHODS PATTE
[3]  
[Anonymous], P KDD 2001 KNOWL DIS
[4]  
[Anonymous], 1999, ADV KERNEL METHODS
[5]  
[Anonymous], J MACHINE LEARNING R
[6]   Ellipsoidal separation for classification problems [J].
Astorino, A ;
Gaudioso, M .
OPTIMIZATION METHODS & SOFTWARE, 2005, 20 (2-3) :261-270
[7]   A fixed-center spherical separation algorithm with kernel transformations for classification problems [J].
Astorino, A. ;
Gaudioso, M. .
COMPUTATIONAL MANAGEMENT SCIENCE, 2009, 6 (03) :357-372
[8]   Polyhedral separability through successive LP [J].
Astorino, A ;
Gaudioso, M .
JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2002, 112 (02) :265-293
[9]  
Chapelle O., 2005, P 10 INT WORKSH ART, P57
[10]  
Christianini N., 2000, INTRO SUPPORT VECTOR, P189