Creation and annihilation of intrinsic localized excitations

被引:7
作者
Rasmussen, KO [1 ]
Bishop, AR [1 ]
Gronbech-Jensen, N [1 ]
机构
[1] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA
关键词
D O I
10.1103/PhysRevE.58.R40
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Creation and annihilation of intrinsic localized excitations in a nonintegrable discrete one-dimensional nonlinear Schrodinger system is studied numerically. We demonstrate that the distribution p(x) of the amplitudes x. Of the created excitations has the form p(x)= x(alpha)exp(beta alpha(gamma)). The log-normal form y=2 has previously been found in non-Hamiltonian continuous systems.
引用
收藏
页码:R40 / R43
页数:4
相关论文
共 30 条
[1]  
Ablowitz M.J., 1991, SOLITONS NONLINEAR E
[2]   ENERGY LOCALIZATION IN NONLINEAR FIBER ARRAYS - COLLAPSE-EFFECT COMPRESSOR [J].
ACEVES, AB ;
LUTHER, GG ;
DEANGELIS, C ;
RUBENCHIK, AM ;
TURITSYN, SK .
PHYSICAL REVIEW LETTERS, 1995, 75 (01) :73-76
[3]   Breathers in nonlinear lattices: Existence, linear stability and quantization [J].
Aubry, S .
PHYSICA D-NONLINEAR PHENOMENA, 1997, 103 (1-4) :201-250
[4]   Exponential stability of breathers in Hamiltonian networks of weakly coupled oscillators [J].
Bambusi, D .
NONLINEARITY, 1996, 9 (02) :433-457
[5]   NEURAL NETWORKS, LATTICE INSTANTONS, AND THE ANTI-INTEGRABLE LIMIT [J].
BRESSLOFF, PC .
PHYSICAL REVIEW LETTERS, 1995, 75 (05) :962-965
[6]   LOCALIZED STATES IN DISCRETE NONLINEAR SCHRODINGER-EQUATIONS [J].
CAI, D ;
BISHOP, AR ;
GRONBECHJENSEN, N .
PHYSICAL REVIEW LETTERS, 1994, 72 (05) :591-595
[7]   DEFECT-MEDIATED STABILITY - AN EFFECTIVE HYDRODYNAMIC THEORY OF SPATIOTEMPORAL CHAOS [J].
CHOW, CC ;
HWA, T .
PHYSICA D, 1995, 84 (3-4) :494-512
[8]   Stabilization of nonlinear excitations by disorder [J].
Christiansen, PL ;
Gaididei, YB ;
Johansson, M ;
Rasmussen, KO ;
Usero, D ;
Vazquez, L .
PHYSICAL REVIEW B, 1997, 56 (22) :14407-14413
[9]  
CHRISTIANSEN PL, 1993, PHYSICA D, V68
[10]   ENERGY LOCALIZATION IN NONLINEAR LATTICES [J].
DAUXOIS, T ;
PEYRARD, M .
PHYSICAL REVIEW LETTERS, 1993, 70 (25) :3935-3938