Analysis of arrayed nanocapacitor formed on nanorods by flow-rate interruption atomic layer deposition

被引:6
|
作者
Lin, Bo-Cheng [1 ]
Ku, Ching-Shun [2 ]
Lee, Hsin-Yi [2 ]
Chakroborty, Subhendu [1 ]
Wu, Albert T. [1 ]
机构
[1] Natl Cent Univ, Dept Chem & Mat Engn, Jhongli 320, Taiwan
[2] Natl Synchrotron Radiat Res Ctr, 101 Hsin Ann Rd,Hsinchu Sci Pk, Hsinchu 30076, Taiwan
关键词
ZnO nanorod arrays; Hydrothermal growth; Atomic layer deposition; Nanocapacitor; Nanosphere lithography; EPITAXIAL ZNO FILMS; CAPACITOR ARRAYS; GROWTH; SILICON;
D O I
10.1016/j.apsusc.2017.07.151
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Flow-rate interruption (FRI) atomic layer deposition (ALD) technique was adopted to fabricate AZO/Al2O3/AZO thin film on a ZnO nanorod array template at low temperature. The high quality amorphous dielectric Al2O3 layer was deposited at 50 degrees C. The template with an average of 0.73 mu m in length was made by a simple hydrothermal method on a c-plane sapphire with an AZO seed layer. Using Polystyrene (PS) microspheres were served as a mask to form vertical and well-aligned ZnO nanostructures. Field-emission scanning electron microscope (FESEM) and transmission electron microscope (TEM) images show ALD to have achieved good step coverage and thickness control in the thin films structure coating. The capacitance density of the arrayed template nanocapacitor increased more than 100% than those of the thin film capacitor at an applied frequency of 10 kHz. These results suggest that the ZnO-arrayed template could enhance energy storage capability by providing significant surface area. This structure provides a concept for high surface-area nanocapacitor applications. (C) 2017 Elsevier B.V. All rights reserved.
引用
收藏
页码:224 / 228
页数:5
相关论文
共 50 条
  • [21] Optimizing Atomic Layer Deposition Processes with Nanowire-Assisted TEM Analysis
    Schweizer, Peter
    Vogl, Lilian M.
    Maeder, Xavier
    Utke, Ivo
    Michler, Johann
    ADVANCED MATERIALS INTERFACES, 2024, 11 (13)
  • [22] Correlation between structural and bioactive properties of titanium dioxide formed by atomic layer deposition
    Solovyev A.A.
    Ovchinnikov D.V.
    Korostelev E.V.
    Markeev A.M.
    Nanotechnologies in Russia, 2013, 8 (5-6): : 388 - 391
  • [23] Ultrathin molybdenum oxide anode buffer layer for organic photovoltaic cells formed using atomic layer deposition
    Tseng, Yu-Chih
    Mane, Anil U.
    Elam, Jeffrey W.
    Darling, Seth B.
    SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2012, 99 : 235 - 239
  • [24] Effect of water dose on the atomic layer deposition rate of oxide thin films
    Matero, R
    Rahtu, A
    Ritala, M
    Leskelä, M
    Sajavaara, T
    THIN SOLID FILMS, 2000, 368 (01) : 1 - 7
  • [25] XPS analysis of AlN thin films deposited by plasma enhanced atomic layer deposition
    Motamedi, P.
    Cadien, K.
    APPLIED SURFACE SCIENCE, 2014, 315 : 104 - 109
  • [26] Reaction factorization for the dynamic analysis of atomic layer deposition kinetics
    Remmers, Elizabeth M.
    Travis, Curtisha D.
    Adomaitis, Raymond A.
    CHEMICAL ENGINEERING SCIENCE, 2015, 127 : 374 - 391
  • [27] Spectral analysis on CoOx films deposited by atomic layer deposition
    Xu, Xuefeng
    Wang, Jingang
    Sun, Mengtao
    CHEMICAL PHYSICS LETTERS, 2020, 742
  • [28] THE TOPOLOGY WITHIN RECIRCULATING FLOW IN THE ATOMIC LAYER DEPOSITION THIN FILM PROCESS
    Coetzee, Rigardt Alfred Maarten
    Hoenselaar, Damon James
    Bhamjee, Muaaz
    Jen, Tien-Chien
    PROCEEDINGS OF THE ASME 2020 INTERNATIONAL MECHANICAL ENGINEERING CONGRESS AND EXPOSITION, IMECE2020, VOL 2A, 2020,
  • [29] Fabrication of epitaxial ZnO films by atomic-layer deposition with interrupted flow
    Ku, Ching-Shun
    Huang, Jheng-Ming
    Lin, Chih-Ming
    Lee, Hsin-Yi
    THIN SOLID FILMS, 2009, 518 (05) : 1373 - 1376
  • [30] Atomic Layer Deposition of Al2O3 and ZnO at Atmospheric Pressure in a Flow Tube Reactor
    Jur, Jesse S.
    Parsons, Gregory N.
    ACS APPLIED MATERIALS & INTERFACES, 2011, 3 (02) : 299 - 308