Embeddings and Lebesgue-Type Inequalities for the Greedy Algorithm in Banach Spaces

被引:19
作者
Berna, Pablo M. [1 ]
Blasco, Oscar [2 ]
Garrigos, Gustavo [3 ]
Hernandez, Eugenio [1 ]
Oikhberg, Timur [4 ]
机构
[1] Univ Autonoma Madrid, Dept Matemat, E-28049 Madrid, Spain
[2] Univ Valencia, Dept Anal Matemat, Campus Burjassot, E-46100 Valencia, Spain
[3] Univ Murcia, Dept Matemat, E-30100 Murcia, Spain
[4] Univ Illinois, Dept Math, Urbana, IL 61801 USA
关键词
Non-linear approximation; Lebesgue-type inequality; Greedy algorithm; Quasi-greedy basis; Biorthogonal system; Discrete Lorentz space; M-TERM APPROXIMATION; BIORTHOGONAL SYSTEMS; BASES;
D O I
10.1007/s00365-018-9415-9
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We obtain Lebesgue-type inequalities for the greedy algorithm for arbitrary complete seminormalized biorthogonal systems in Banach spaces. The bounds are given only in terms of the upper democracy functions of the basis and its dual. We also show that these estimates are equivalent to embeddings between the given Banach space and certain discrete weighted Lorentz spaces. Finally, the asymptotic optimality of these inequalities is illustrated in various examples of not necessarily quasi-greedy bases.
引用
收藏
页码:415 / 451
页数:37
相关论文
共 32 条
[1]   Lorentz Spaces and Embeddings Induced by Almost Greedy Bases in Banach Spaces [J].
Albiac, F. ;
Ansorena, J. L. .
CONSTRUCTIVE APPROXIMATION, 2016, 43 (02) :197-215
[2]  
Bednorz Witold, 2008, ADV GREEDY ALGORITHM
[3]  
Benett C., 1988, INTERPOLATION OPERAT
[4]   Lebesgue inequalities for the greedy algorithm in general bases [J].
Berna, Pablo M. ;
Blasco, Oscar ;
Garrigos, Gustavo .
REVISTA MATEMATICA COMPLUTENSE, 2017, 30 (02) :369-392
[5]  
Carro M. J., 2007, MEMOIRS AM MATH SOC
[6]   Lebesgue constants for the weak greedy algorithm [J].
Dilworth, S. J. ;
Kutzarova, D. ;
Oikhberg, T. .
REVISTA MATEMATICA COMPLUTENSE, 2015, 28 (02) :393-409
[7]   Quasi-greedy bases and Lebesgue-type inequalities [J].
Dilworth, S. J. ;
Soto-Bajo, M. ;
Temlyakov, V. N. .
STUDIA MATHEMATICA, 2012, 211 (01) :41-69
[8]   On the existence of almost greedy bases in Banach spaces [J].
Dilworth, SJ ;
Kalton, NJ ;
Kutzarova, D .
STUDIA MATHEMATICA, 2003, 159 (01) :67-101
[9]   The thresholding greedy algorithm, greedy bases, and duality [J].
Dilworth, SJ ;
Kalton, NJ ;
Kutzarova, D ;
Temlyakov, VN .
CONSTRUCTIVE APPROXIMATION, 2003, 19 (04) :575-597
[10]   A conditional quasi-greedy basis of l1 [J].
Dilworth, SJ ;
Mitra, D .
STUDIA MATHEMATICA, 2001, 144 (01) :95-100