Invariants for bi-Lipschitz equivalence of ideals

被引:2
作者
Bivia-Ausina, Carles [1 ]
Fukui, Toshizumi [2 ]
机构
[1] Univ Politecn Valencia, Inst Univ Matemat Pura & Aplicada, Cami Vera S-N, E-46022 Valencia, Spain
[2] Saitama Univ, Dept Math, Sakura Ku, 255 Shimo Okubo, Saitama 3388570, Japan
关键词
GENERIC LINEAR SECTIONS; MIXED MULTIPLICITIES; LOJASIEWICZ EXPONENT; MONOMIAL IDEALS; NEWTON FILTRATIONS; WHITNEY CONDITIONS; MILNOR NUMBERS; SINGULARITIES; REDUCTIONS; POLYHEDRA;
D O I
10.1093/qmath/hax002
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We introduce the notion of bi-Lipschitz equivalence of ideals and derive numerical invariants for such equivalence. In particular, we show that the log canonical threshold of ideals is a bi-Lipschitz invariant. We apply our method to several deformations ft:,0,0 (. n). (.) and show that they are not bi-Lipschitz trivial, specially focusing on several known examples of non-m*-constant deformations.
引用
收藏
页码:791 / 815
页数:25
相关论文
共 52 条
[1]  
Abderrahmane O. M., LOJASIEWICZ EXPONENT
[2]  
[Anonymous], 2012, Wiad. Math.
[3]  
[Anonymous], 2006, London Math. Soc. Lecture Note Ser.
[4]  
[Anonymous], 2004, Classical Setting: Line Bundles and Linear Series
[5]  
Arnold V. I., 1985, MONOGR MATH, VI
[6]   Milnor Number of Weighted-Le-Yomdin Singularities [J].
Bartolo, E. Artal ;
Fernandez de Bobadilla, J. ;
Luengo, I. ;
Melle-Hernandez, A. .
INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2010, 2010 (22) :4301-4318
[7]   K-bi-Lipschitz equivalence of real function-germs [J].
Birbrair, L. ;
Costa, J. C. F. ;
Fernandes, A. ;
Ruas, M. A. S. .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2007, 135 (04) :1089-1095
[8]   Jacobian ideals and the Newton non-degeneracy condition [J].
Bivià-Ausina, C .
PROCEEDINGS OF THE EDINBURGH MATHEMATICAL SOCIETY, 2005, 48 :21-36
[9]   Newton filtrations, graded algebras and codimension of non-degenerate ideals [J].
Bivià-Ausina, C ;
Fukui, T ;
Saia, MJ .
MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 2002, 133 :55-75
[10]  
Bivia-Ausina C., P AM MATH SOC