GLOBAL GRADIENT ESTIMATES FOR A GENERAL CLASS OF QUASILINEAR ELLIPTIC EQUATIONS WITH ORLICZ GROWTH

被引:8
作者
Baasandorj, Sumiya [1 ]
Byun, Sun-Sig [1 ,2 ]
Lee, Ho-Sik [1 ]
机构
[1] Seoul Natl Univ, Dept Math Sci, Seoul 08826, South Korea
[2] Seoul Natl Univ, Res Inst Math, Seoul 08826, South Korea
关键词
BMO space; Calderon-Zygmund estimate; non-standard growth; Orlicz space; Reifenberg flat domain; LIPSCHITZ REGULARITY; ZYGMUND THEORY; MINIMIZERS; SYSTEMS; FUNCTIONALS;
D O I
10.1090/proc/15585
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We provide an optimal global Calderon-Zygmund theory for quasi-linear elliptic equations of a very general form with Orlicz growth on bounded nonsmooth domains under minimal regularity assumptions of the nonlinearity A = A(x, u, Du) in the first and second variables (x, z) as well as on the boundary of the domain. Our result improves known regularity results in the literature regarding nonlinear elliptic operators depending on a given bounded weak solution.
引用
收藏
页码:4189 / 4206
页数:18
相关论文
共 50 条
  • [1] Gradient estimates for a class of parabolic systems
    Acerbi, Emilio
    Mingione, Giuseppe
    [J]. DUKE MATHEMATICAL JOURNAL, 2007, 136 (02) : 285 - 320
  • [2] Adams R.A., 2003, PURE APPL MATH, V140
  • [3] Nonlinear Caldern-Zygmund Theory in the Limiting Case
    Avelin, Benny
    Kuusi, Tuomo
    Mingione, Giuseppe
    [J]. ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2018, 227 (02) : 663 - 714
  • [4] Calderon-Zygmund estimates for generalized double phase problems
    Baasandorj, Sumiya
    Byun, Sun-Sig
    Oh, Jehan
    [J]. JOURNAL OF FUNCTIONAL ANALYSIS, 2020, 279 (07)
  • [5] The Cauchy-Dirichlet problem for a general class of parabolic equations
    Baroni, Paolo
    Lindfors, Casimir
    [J]. ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2017, 34 (03): : 593 - 624
  • [6] Riesz potential estimates for a general class of quasilinear equations
    Baroni, Paolo
    [J]. CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2015, 53 (3-4) : 803 - 846
  • [7] Elliptic equations with BMO coefficients in Reifenberg domains
    Byun, SS
    Wang, LH
    [J]. COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2004, 57 (10) : 1283 - 1310
  • [8] Irregular Double Obstacle Problems with Orlicz Growth
    Byun, Sun-Sig
    Liang, Shuang
    Ok, Jihoon
    [J]. JOURNAL OF GEOMETRIC ANALYSIS, 2020, 30 (02) : 1965 - 1984
  • [9] Global Sobolev regularity for general elliptic equations of p-Laplacian type
    Byun, Sun-Sig
    Palagachev, Dian K.
    Shin, Pilsoo
    [J]. CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2018, 57 (05)
  • [10] Lipschitz regularity for a general class of quasilinear elliptic equations in convex domains
    Byun, Sun-Sig
    So, Hyoungsuk
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2017, 453 (01) : 32 - 47