Deep Learning Hardware/Software Co-Design for Heart Sound Classification

被引:2
作者
Jhong, Wun-Siou [1 ]
Chu, Shao-, I [1 ]
Huang, Yu-Jung [2 ]
Hsu, Tsun-Yi [1 ]
Lin, Wei-Chen [3 ]
Huang, Pokai [4 ]
Wang, Jia-Jung [5 ]
机构
[1] Natl Kaohsiung Univ Sci & Technol, Dept Elect Engn, Kaohsiung, Taiwan
[2] I Shou Univ, Dept Elect Engn, Kaohsiung, Taiwan
[3] E DA Hosp, Med Res Dept, Kaohsiung, Taiwan
[4] E DA DACHANG Hosp, Dept Paediat, Kaohsiung, Taiwan
[5] I Shou Univ, Dept Biomed Engn, Kaohsiung, Taiwan
来源
2020 17TH INTERNATIONAL SOC DESIGN CONFERENCE (ISOCC 2020) | 2020年
关键词
deep learning; codesign; LSTM; FPGA; FEATURES;
D O I
10.1109/ISOCC50952.2020.9333069
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
This paper presents a software/hardware co-design for classifying three most commonly heart sounds classes: normal, murmur and extrasystole heartbeat. The detection system extracts Mel Frequency Cepstral Coefficient (MFCC)-based heart sound features to train different deep learning network architectures for multiclass classification. The software/hardware co-design for Long Short-Term Memory (LSTM) implementation indicates the multiclass classification accuracy of 85% can be achieved. The proposed heart sound classification platform has great development potential and good application prospects.
引用
收藏
页码:27 / 28
页数:2
相关论文
共 9 条
[1]   Classification of Heart Sounds Using Fractional Fourier Transform Based Mel-Frequency Spectral Coefficients and Stacked Autoencoder Deep Neural Network [J].
Abduh, Zaid ;
Nehary, Ebrahim Ameen ;
Wahed, Manal Abdel ;
Kadah, Yasser M. .
JOURNAL OF MEDICAL IMAGING AND HEALTH INFORMATICS, 2019, 9 (01) :1-8
[2]  
Bentley P., The PASCAL Classifying Heart Sounds Challenge 2011 (CHSC2011) Results
[3]   A study of time-frequency features for CNN-based automatic heart sound classification for pathology detection [J].
Bozkurt, Baris ;
Germanakis, Ioannis ;
Stylianou, Yannis .
COMPUTERS IN BIOLOGY AND MEDICINE, 2018, 100 :132-143
[4]   The Diagnosis for the Extrasystole Heart Sound Signals Based on the Deep Learning [J].
Chen, Lili ;
Ren, Junlan ;
Hao, Yaru ;
Hu, Xue .
JOURNAL OF MEDICAL IMAGING AND HEALTH INFORMATICS, 2018, 8 (05) :959-968
[5]   Recent advances in heart sound analysis [J].
Clifford, Gari D. ;
Liu, Chengyu ;
Moody, Benjamin ;
Millet, Jose ;
Schmidt, Samuel ;
Li, Qiao ;
Silva, Ikaro ;
Mark, Roger G. .
PHYSIOLOGICAL MEASUREMENT, 2017, 38 (08) :E10-E25
[6]   Deep Neural Networks for the Recognition and Classification of Heart Murmurs Using Neuromorphic Auditory Sensors [J].
Dominguez-Morales, Juan P. ;
Jimenez-Fernandez, Angel F. ;
Dominguez-Morales, Manuel J. ;
Jimenez-Moreno, Gabriel .
IEEE TRANSACTIONS ON BIOMEDICAL CIRCUITS AND SYSTEMS, 2018, 12 (01) :24-34
[7]  
Geneva: World Health Organization, 2018, WORLD HLTH STAT 2018
[8]   Phonocardiographic Sensing Using Deep Learning for Abnormal Heartbeat Detection [J].
Latif, Siddique ;
Usman, Muhammad ;
Rana, Rajib ;
Qadir, Junaid .
IEEE SENSORS JOURNAL, 2018, 18 (22) :9393-9400
[9]   Acoustic Features for the Identification of Coronary Artery Disease [J].
Schmidt, Samuel E. ;
Holst-Hansen, Claus ;
Hansen, John ;
Toft, Egon ;
Struijk, Johannes J. .
IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 2015, 62 (11) :2611-2619