New over-relaxed monotone fast iterative shrinkage-thresholding algorithm for linear inverse problems

被引:6
|
作者
Zhu, Tao [1 ]
机构
[1] South China Univ Technol, Sch Elect & Informat Engn, Guangzhou 510640, Guangdong, Peoples R China
关键词
inverse problems; gradient methods; convergence of numerical methods; parameter setting strategy; OMFISTA; over-relaxed monotone; shrinkage-thresholding algorithm; linear inverse problems; complex convergence condition; sufficient condition; OMFISTAv2; system matrix; SIGNAL; OPTIMIZATION; PROJECTION;
D O I
10.1049/iet-ipr.2019.0600
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The over-relaxed monotone fast iterative shrinkage-thresholding algorithm (OMFISTA) needs to satisfy a complex convergence condition with respect to its additional parameters. To simplify the convergence condition, this study proposes a new OMFISTA, termed OMFISTAv2, using a parameter setting strategy which will derive a simple sufficient condition with respect to the additional parameters to guarantee the convergence of OMFISTAv2. Moreover, the authors find experimentally that OMFISTAv2 can accelerate MFISTA in some cases where the system matrix is ill-conditioned or rank-deficient, while OMFISTA cannot.
引用
收藏
页码:2888 / 2896
页数:9
相关论文
共 50 条
  • [1] A Fast Iterative Shrinkage-Thresholding Algorithm for Linear Inverse Problems
    Beck, Amir
    Teboulle, Marc
    SIAM JOURNAL ON IMAGING SCIENCES, 2009, 2 (01): : 183 - 202
  • [2] Eigenvalue-free iterative shrinkage-thresholding algorithm for solving the linear inverse problems
    Tong, Can
    Teng, Yueyang
    Yao, Yudong
    Qi, Shouliang
    Li, Chen
    Zhang, Tie
    INVERSE PROBLEMS, 2021, 37 (06)
  • [3] ACCELERATING THE OVER-RELAXED ITERATIVE SHRINKAGE-THRESHOLDING ALGORITHMS WITH FAST AND EXACT LINE SEARCH FOR HIGH RESOLUTION TOMOGRAPHIC IMAGE RECONSTRUCTION
    Zibetti, Marcelo V. W.
    Helou, Elias S.
    Miqueles, Eduardo X.
    De Pierro, Alvaro R.
    2015 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2015, : 2305 - 2308
  • [4] Over-relaxation of the fast iterative shrinkage-thresholding algorithm with variable stepsize
    Yamagishi, Masao
    Yamada, Isao
    INVERSE PROBLEMS, 2011, 27 (10)
  • [5] Accelerating monotone fast iterative shrinkage-thresholding algorithm with sequential subspace optimization for sparse recovery
    Zhu, Tao
    SIGNAL IMAGE AND VIDEO PROCESSING, 2020, 14 (04) : 771 - 780
  • [6] Fast compressive beamforming with a modified fast iterative shrinkage-thresholding algorithm
    Wang, Shuo
    Chi, Cheng
    Jin, Shenglong
    Wang, Peng
    Liu, Jiyuan
    Huang, Haining
    JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA, 2021, 149 (05): : 3437 - 3448
  • [7] Solving inverse problems for optical scanning holography using an adaptively iterative shrinkage-thresholding algorithm
    Zhao, Fengjun
    Qu, Xiaochao
    Zhang, Xin
    Poon, Ting-Chung
    Kim, Taegeun
    Kim, You Seok
    Liang, Jimin
    OPTICS EXPRESS, 2012, 20 (06): : 5942 - 5954
  • [8] Entropy-Regularized Iterative Weighted Shrinkage-Thresholding Algorithm (ERIWSTA) for inverse problems in imaging
    Ma, Limin
    Wu, Bingxue
    Yao, Yudong
    Teng, Yueyang
    PLOS ONE, 2024, 19 (12):
  • [9] IMPROVING "FAST ITERATIVE SHRINKAGE-THRESHOLDING ALGORITHM": FASTER, SMARTER, AND GREEDIER
    Liang, Jingwei
    Luo, Tao
    Schonlieb, Carola-Bibiane
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2022, 44 (03): : A1069 - A1091
  • [10] Multichannel predictive deconvolution based on the fast iterative shrinkage-thresholding algorithm
    Li, Zhong-Xiao
    Li, Zhen-Chun
    Lu, Wen-Kai
    GEOPHYSICS, 2016, 81 (01) : V17 - V30