Transcriptome-wide miRNA identification of Bacopa monnieri: a cross-kingdom approach

被引:23
作者
Gadhavi, Harshida [1 ]
Patel, Maulikkumar [1 ]
Mangukia, Naman [1 ]
Shah, Kanisha [2 ]
Bhadresha, Kinjal [2 ]
Patel, Saumya K. [1 ]
Rawal, Rakesh M. [2 ]
Pandya, Himanshu A. [1 ]
机构
[1] Gujarat Univ, Sch Sci, Dept Bot Bioinformat & Climate Change Impacts Man, Ahmadabad, Gujarat, India
[2] Gujarat Univ, Sch Sci, Dept Life Sci Food Sci & Nutr, Ahmadabad, Gujarat, India
关键词
Bacopa monnieri; miRNA; Cross-kingdom; Transcriptome; Medicinal Plant; MICRORNA; TARGETS;
D O I
10.1080/15592324.2019.1699265
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Bacopa monnieri known as 'Brahmi' is a well-known medicinal plant belonging to Scrophulariaceae family for its nootropic properties. To the best of our knowledge, no characterization data is available on the potential role of micro RNAs (miRNAs) from this plant till date. We present here the first report of computational characterizations of miRNAs from B. monnieri. Owing to the high conservation of miRNAs in nature, new and potential miRNAs can be identified in plants using in silico techniques. Using the plant miRNA sequences present in the miRBase repository, a total of 12 miRNAs were identified from B. monnieri which pertained to 11 miRNA families from the shoot and root transcriptome data. Furthermore, gene ontology analysis of the identi?ed 68 human target genes exhibited significance in various biological processes. These human target genes were associated with signaling pathways like NF-kB and MAPK with TRAF2, CBX1, IL1B, ITGA4 and ITGB1BP1 as the top five hub nodes. This cross-kingdom study provides initial insights about the potential of miRNA-mediated cross-kingdom regulation and unravels the essential target genes of human with implications in numerous human diseases including cancer.
引用
收藏
页数:16
相关论文
共 45 条
[1]   BASIC LOCAL ALIGNMENT SEARCH TOOL [J].
ALTSCHUL, SF ;
GISH, W ;
MILLER, W ;
MYERS, EW ;
LIPMAN, DJ .
JOURNAL OF MOLECULAR BIOLOGY, 1990, 215 (03) :403-410
[2]  
Andreassi M. G., 2018, Non-Coding RNA Investig, V2, P63, DOI [10.21037/ncri.2018.11.03, DOI 10.21037/NCRI.2018.11.03, DOI 10.21037/ncri]
[3]  
Basak A., 2016, INT J SCI REP, V2, P242, DOI DOI 10.18203/issn.2454-2156.IntJSciRep20163394
[4]  
Bennett C, 2019, GENET ENG BIOTECHNOL, V39, P44, DOI [10.1089/gen.39.05.13, DOI 10.1089/GEN.39.05.13]
[5]  
Chaudhari KS, 2017, ANN NEUROSCI, V24, P111, DOI 10.1159/000475900
[6]   cytoHubba: identifying hub objects and sub-networks from complex interactome [J].
Chin, Chia-Hao ;
Chen, Shu-Hwa ;
Wu, Hsin-Hung ;
Ho, Chin-Wen ;
Ko, Ming-Tat ;
Lin, Chung-Yen .
BMC SYSTEMS BIOLOGY, 2014, 8
[7]   psRNATarget: a plant small RNA target analysis server [J].
Dai, Xinbin ;
Zhao, Patrick Xuechun .
NUCLEIC ACIDS RESEARCH, 2011, 39 :W155-W159
[8]   Transcriptome Landscape at Different Developmental Stages of a Drought Tolerant Cultivar of Flax (Linum usitatissimum) [J].
Dash, Prasanta K. ;
Rai, Rhitu ;
Mahato, Ajay K. ;
Gaikwad, Kishor ;
Singh, Nagendra K. .
FRONTIERS IN CHEMISTRY, 2017, 5
[9]   Salt and Drought Stresses Induce the Aberrant Expression of microRNA Genes in Tobacco [J].
Frazier, Taylor P. ;
Sun, Guiling ;
Burklew, Caitlin E. ;
Zhang, Baohong .
MOLECULAR BIOTECHNOLOGY, 2011, 49 (02) :159-165
[10]   miRBase: microRNA sequences, targets and gene nomenclature [J].
Griffiths-Jones, Sam ;
Grocock, Russell J. ;
van Dongen, Stijn ;
Bateman, Alex ;
Enright, Anton J. .
NUCLEIC ACIDS RESEARCH, 2006, 34 :D140-D144