For regression problems with grouped covariates, we adapt the idea of sparse group lasso (SGL) [10] to the framework of the sufficient dimension reduction. Assuming that the regression falls into a single-index structure, we propose a method called the sparse group sufficient dimension reduction to conduct group and within-group variable selections simultaneously without assuming a specific link function. Simulation studies show that our method is comparable to the SGL under the regular linear model setting and outperforms SGL with higher true positive rates and substantially lower false positive rates when the regression function is nonlinear. One immediate application of our method is to the gene pathway data analysis where genes naturally fall into groups (pathways). An analysis of a glioblastoma microarray data is included for illustration of our method.
机构:
Chinese Acad Sci, Acad Math & Syst Sci, Beijing 100190, Peoples R ChinaChinese Acad Sci, Acad Math & Syst Sci, Beijing 100190, Peoples R China
Li, Yongjin
Zhang, Qingzhao
论文数: 0引用数: 0
h-index: 0
机构:
Univ Chinese Acad Sci, Sch Math Sci, Beijing 100049, Peoples R ChinaChinese Acad Sci, Acad Math & Syst Sci, Beijing 100190, Peoples R China
Zhang, Qingzhao
Wang, Qihua
论文数: 0引用数: 0
h-index: 0
机构:
Chinese Acad Sci, Acad Math & Syst Sci, Beijing 100190, Peoples R China
Shenzhen Univ, Inst Stat Sci, Shenzhen 518006, Peoples R ChinaChinese Acad Sci, Acad Math & Syst Sci, Beijing 100190, Peoples R China
机构:
Nanjing Univ Informat Sci & Technol, Sch Math & Stat, Nanjing 210044, Jiangsu, Peoples R ChinaNanjing Univ Informat Sci & Technol, Sch Math & Stat, Nanjing 210044, Jiangsu, Peoples R China
Lai, Peng
Wang, Qihua
论文数: 0引用数: 0
h-index: 0
机构:
Chinese Acad Sci, Acad Math & Syst Sci, Beijing 100190, Peoples R China
Shenzhen Univ, Inst Stat Sci, Shenzhen 518060, Peoples R ChinaNanjing Univ Informat Sci & Technol, Sch Math & Stat, Nanjing 210044, Jiangsu, Peoples R China
Wang, Qihua
Zhou, Xiao-Hua
论文数: 0引用数: 0
h-index: 0
机构:
Univ Washington, Dept Biostat, Seattle, WA 98195 USANanjing Univ Informat Sci & Technol, Sch Math & Stat, Nanjing 210044, Jiangsu, Peoples R China
机构:
Chinese Acad Sci, Acad Math & Syst Sci, Beijing 100190, Peoples R ChinaChinese Acad Sci, Acad Math & Syst Sci, Beijing 100190, Peoples R China
Li, Yongjin
Zhang, Qingzhao
论文数: 0引用数: 0
h-index: 0
机构:
Univ Chinese Acad Sci, Sch Math Sci, Beijing 100049, Peoples R ChinaChinese Acad Sci, Acad Math & Syst Sci, Beijing 100190, Peoples R China
Zhang, Qingzhao
Wang, Qihua
论文数: 0引用数: 0
h-index: 0
机构:
Chinese Acad Sci, Acad Math & Syst Sci, Beijing 100190, Peoples R China
Shenzhen Univ, Inst Stat Sci, Shenzhen 518006, Peoples R ChinaChinese Acad Sci, Acad Math & Syst Sci, Beijing 100190, Peoples R China
机构:
Nanjing Univ Informat Sci & Technol, Sch Math & Stat, Nanjing 210044, Jiangsu, Peoples R ChinaNanjing Univ Informat Sci & Technol, Sch Math & Stat, Nanjing 210044, Jiangsu, Peoples R China
Lai, Peng
Wang, Qihua
论文数: 0引用数: 0
h-index: 0
机构:
Chinese Acad Sci, Acad Math & Syst Sci, Beijing 100190, Peoples R China
Shenzhen Univ, Inst Stat Sci, Shenzhen 518060, Peoples R ChinaNanjing Univ Informat Sci & Technol, Sch Math & Stat, Nanjing 210044, Jiangsu, Peoples R China
Wang, Qihua
Zhou, Xiao-Hua
论文数: 0引用数: 0
h-index: 0
机构:
Univ Washington, Dept Biostat, Seattle, WA 98195 USANanjing Univ Informat Sci & Technol, Sch Math & Stat, Nanjing 210044, Jiangsu, Peoples R China