A link-free sparse group variable selection method for single-index model

被引:5
|
作者
Zeng, Bilin [1 ]
Wen, Xuerong Meggie [2 ]
Zhu, Lixing [3 ]
机构
[1] Calif State Univ, Dept Math, Bakersfield, CA 93311 USA
[2] Missouri Univ Sci & Technol, Dept Math & Stat, Rolla, MO USA
[3] Hong Kong Baptist Univ, Dept Math, Hong Kong, Hong Kong, Peoples R China
关键词
Single-index model; sparse group lasso; gene pathway analysis; sufficient dimension reduction; variable selection; 62G08; 62P10; SLICED INVERSE REGRESSION; DIMENSION REDUCTION; SHRINKAGE; REGULARIZATION; SURVIVAL; NETWORKS;
D O I
10.1080/02664763.2016.1254731
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
For regression problems with grouped covariates, we adapt the idea of sparse group lasso (SGL) [10] to the framework of the sufficient dimension reduction. Assuming that the regression falls into a single-index structure, we propose a method called the sparse group sufficient dimension reduction to conduct group and within-group variable selections simultaneously without assuming a specific link function. Simulation studies show that our method is comparable to the SGL under the regular linear model setting and outperforms SGL with higher true positive rates and substantially lower false positive rates when the regression function is nonlinear. One immediate application of our method is to the gene pathway data analysis where genes naturally fall into groups (pathways). An analysis of a glioblastoma microarray data is included for illustration of our method.
引用
收藏
页码:2388 / 2400
页数:13
相关论文
共 50 条
  • [1] Group sparse sufficient dimension reduction: a model-free group variable selection method
    Cai, Kaida
    Lu, Xuewen
    Shen, Hua
    COMPUTATIONAL STATISTICS, 2024,
  • [2] Variable selection for the single-index model
    Kong, Efang
    Xia, Yingcun
    BIOMETRIKA, 2007, 94 (01) : 217 - 229
  • [3] Sparse Single-Index Model
    Alquier, Pierre
    Biau, Gerard
    JOURNAL OF MACHINE LEARNING RESEARCH, 2013, 14 : 243 - 280
  • [4] Variable selection in heteroscedastic single-index quantile regression
    Christou, Eliana
    Akritas, Michael G.
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2018, 47 (24) : 6019 - 6033
  • [5] Variable selection for partially varying coefficient single-index model
    Feng, Sanying
    Xue, Liugen
    JOURNAL OF APPLIED STATISTICS, 2013, 40 (12) : 2637 - 2652
  • [6] Variable selection and debiased estimation for single-index expectile model
    Jiang, Rong
    Peng, Yexun
    Deng, Yufei
    AUSTRALIAN & NEW ZEALAND JOURNAL OF STATISTICS, 2021, 63 (04) : 658 - 673
  • [7] Variable Selection for the Partial Linear Single-Index Model
    Wu WANG
    Zhong-yi ZHU
    Acta Mathematicae Applicatae Sinica, 2017, 33 (02) : 373 - 388
  • [8] Variable selection for the partial linear single-index model
    Wu Wang
    Zhong-yi Zhu
    Acta Mathematicae Applicatae Sinica, English Series, 2017, 33 : 373 - 388
  • [9] Variable selection for the partial linear single-index model
    Wang, Wu
    Zhu, Zhong-yi
    ACTA MATHEMATICAE APPLICATAE SINICA-ENGLISH SERIES, 2017, 33 (02): : 373 - 388
  • [10] Quantile regression and variable selection for the single-index model
    Lv, Yazhao
    Zhang, Riquan
    Zhao, Weihua
    Liu, Jicai
    JOURNAL OF APPLIED STATISTICS, 2014, 41 (07) : 1565 - 1577