Nanoparticle plasmonics: going practical with transition metal nitrides

被引:342
作者
Guler, Urcan
Shalaev, Vladimir M. [1 ]
Boltasseva, Alexandra
机构
[1] Purdue Univ, Sch Elect & Comp Engn, W Lafayette, IN 47907 USA
关键词
NANOCRYSTALLINE TITANIUM NITRIDE; OPTICAL-PROPERTIES; SILVER NANOPARTICLES; THERMAL-STABILITY; LASER-ABLATION; XPS SPECTRA; THIN-FILMS; SURFACE; SOLAR; GOLD;
D O I
10.1016/j.mattod.2014.10.039
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Promising designs and experimental realizations of devices with unusual properties in the field of plasmonics have attracted a great deal of attention over the past few decades. However, the high expectations for realized technology products have not been met so far. The main complication is the absence of robust, high performance, low cost plasmonic materials that can be easily integrated into already established technologies such as microelectronics. This review provides a brief discussion on alternative plasmonic materials for localized surface plasmon applications and focuses on transition metal nitrides, in particular, titanium nitride, which has recently been shown to be a high performance refractory plasmonic material that could replace and even outperform gold in various plasmonic devices. As a material compatible with biological environments and the semiconductor industry, titanium nitride possesses superior properties compared to noble metals such as high temperature durability, chemical stability, corrosion resistance, low cost and mechanical hardness.
引用
收藏
页码:227 / 237
页数:11
相关论文
共 143 条
[1]   Heterogenous Catalysis Mediated by Plasmon Heating [J].
Adleman, James R. ;
Boyd, David A. ;
Goodwin, David G. ;
Psaltis, Demetri .
NANO LETTERS, 2009, 9 (12) :4417-4423
[2]   The promise of plasmonics [J].
Atwater, Harry A. .
SCIENTIFIC AMERICAN, 2007, 296 (04) :56-63
[3]   Au Nanomatryoshkas as Efficient Near-Infrared Photothermal Transducers for Cancer Treatment: Benchmarking against Nanoshells [J].
Ayala-Orozco, Ciceron ;
Urban, Cordula ;
Knight, Mark W. ;
Urban, Alexander Skyrme ;
Neumann, Oara ;
Bishnoi, Sandra W. ;
Mukherjee, Shaunak ;
Goodman, Amanda M. ;
Charron, Heather ;
Mitchell, Tamika ;
Shea, Martin ;
Roy, Ronita ;
Nanda, Sarmistha ;
Schiff, Rachel ;
Halas, Naomi J. ;
Joshi, Amit .
ACS NANO, 2014, 8 (06) :6372-6381
[4]   Heat generation in plasmonic nanostructures: Influence of morphology [J].
Baffou, G. ;
Quidant, R. ;
Girard, C. .
APPLIED PHYSICS LETTERS, 2009, 94 (15)
[5]   Trends and Current Topics in the Field of Laser Ablation and Nanoparticle Generation in Liquids [J].
Barcikowski, Stephan ;
Mafune, Fumitaka .
JOURNAL OF PHYSICAL CHEMISTRY C, 2011, 115 (12) :4985-4985
[6]   Surface plasmon subwavelength optics [J].
Barnes, WL ;
Dereux, A ;
Ebbesen, TW .
NATURE, 2003, 424 (6950) :824-830
[7]   Thermophotovoltaics: Basic principles and critical aspects of system design [J].
Bauer T. .
Green Energy and Technology, 2011, 7
[8]   Circular Dichroism in the Optical Second-Harmonic Emission of Curved Gold Metal Nanowires [J].
Belardini, A. ;
Larciprete, M. C. ;
Centini, M. ;
Fazio, E. ;
Sibilia, C. ;
Chiappe, D. ;
Martella, C. ;
Toma, A. ;
Giordano, M. ;
de Mongeot, F. Buatier .
PHYSICAL REVIEW LETTERS, 2011, 107 (25)
[9]   Plasmon absorption in nanospheres: A comparison of sodium, potassium, aluminium, silver and gold [J].
Blaber, M. G. ;
Arnold, M. D. ;
Harris, N. ;
Ford, M. J. ;
Cortie, M. B. .
PHYSICA B-CONDENSED MATTER, 2007, 394 (02) :184-187
[10]   A review of the optical properties of alloys and intermetallics for plasmonics [J].
Blaber, M. G. ;
Arnold, M. D. ;
Ford, M. J. .
JOURNAL OF PHYSICS-CONDENSED MATTER, 2010, 22 (14)