Kronecker-Halton sequences in Fp((X-1))

被引:3
作者
Hofer, Roswitha [1 ]
机构
[1] Johannes Kepler Univ Linz, Inst Financial Math & Appl Number Theory, Altenbergerstr 69, A-4040 Linz, Austria
基金
奥地利科学基金会;
关键词
Hybrid sequences; Digital Kronecker sequences; Halton-type sequences; Discrepancy; GLOBAL FUNCTION-FIELDS; POINT SETS; HYBRID SEQUENCES; LOW-DISCREPANCY; DIOPHANTINE APPROXIMATIONS; CONSTRUCTION; S)-SEQUENCES; EXISTENCE; DIAPHONY; SERIES;
D O I
10.1016/j.ffa.2017.11.006
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we investigate the distribution properties of hybrid sequences which are made by combining Halton sequences in the ring of polynomials and digital Kronecker sequences. We give a full criterion for the uniform distribution and prove results on the discrepancy of such hybrid sequences. (C) 2017 Elsevier Inc. All rights reserved.
引用
收藏
页码:154 / 177
页数:24
相关论文
共 38 条
[1]  
[Anonymous], 2011, UNIF DISTRIB THEORY
[2]  
[Anonymous], C SERIES APPL MATH
[3]  
[Anonymous], 1992, RANDOM NUMBER GENERA
[4]  
[Anonymous], 2010, UNIF DISTRIB THEORY
[5]  
[Anonymous], 2010, Digital Nets and Sequences: Discrepancy Theory and Quasi-Monte Carlo Integration
[6]  
Bugeaud Y, 2008, AIP CONF PROC, V976, P19, DOI 10.1063/1.2841906
[7]  
Drmota M., 2017, NUMBER THEORY DIOPHA, P219
[8]   DISCREPANCY OF SEQUENCES ASSOCIATED WITH A NUMERATION SYSTEM (IN S-DIMENSION) [J].
FAURE, H .
ACTA ARITHMETICA, 1982, 41 (04) :337-351
[9]  
Gomez-Perez D., 2013, UNIF DISTRIB THEORY, V8, P31
[10]  
Halton J. H., 1960, Numerische Mathematik, V2, P84, DOI [10.1007/BF01386213, DOI 10.1007/BF01386213]