A high-performance β-stabilized Ti-43Al-9V-0.2Y alloy sheet with a nano-scaled antiphase domain

被引:19
作者
Zhang, Yu [1 ,2 ]
Wang, Xiaopeng [2 ]
Kong, Fantao [1 ,2 ]
Chen, Yuyong [1 ,2 ]
机构
[1] Harbin Inst Technol, State Key Lab Adv Welding & Joining, Harbin 150001, Heilongjiang, Peoples R China
[2] Harbin Inst Technol, Natl Key Lab Precis Hot Proc Met, Harbin 150001, Heilongjiang, Peoples R China
基金
中国国家自然科学基金;
关键词
TiAl sheet; Antiphase domain; Microstructure; Phase transformation; Mechanical properties; TIAL ALLOYS; MICROSTRUCTURE; EVOLUTION;
D O I
10.1016/j.matlet.2017.12.002
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
A novel beta-stabilized Ti-43Al-9V-0.2Y alloy sheet with a nano-scaled antiphase domain (APD) microstructure and excellent performance was fabricated via hot-pack rolling in the (alpha + gamma) phase region (1260 degrees C). Owing to the temperature drop and reheat associated with multi-pass rolling, heterogeneous and regular APD-mixed lamellar structures formed with the occurrence of alpha -> beta + gamma and alpha -> alpha(2) + gamma phase transformations. The antiphase boundary (APB) between two nano-scaled APD structures (average size: similar to 15 nm) is identified as a type of atomic shift, which is induced by the disorder-order transformation in the alpha(2) phase. Moreover, compared with the corresponding as-forged alloy and other hot-working beta-stabilized TiAl alloys, the current alloy sheet exhibited higher strength both at room and elevated temperatures. The improvement in the tensile properties is attributed mainly to the duplex microstructure consisting of fine nano-scaled APD/lamella mixed structures. (C) 2017 Elsevier B.V. All rights reserved.
引用
收藏
页码:182 / 185
页数:4
相关论文
共 13 条
[1]   Intermetallic titanium aluminides in aerospace applications - processing, microstructure and properties [J].
Clemens, Helmut ;
Mayer, Svea .
MATERIALS AT HIGH TEMPERATURES, 2016, 33 (4-5) :560-570
[2]   Design, Processing, Microstructure, Properties, and Applications of Advanced Intermetallic TiAl Alloys [J].
Clemens, Helmut ;
Mayer, Svea .
ADVANCED ENGINEERING MATERIALS, 2013, 15 (04) :191-215
[3]   Microstructural evolution, hot workability, and mechanical properties of Ti-43Al-2Cr-2Mn-0.2Y alloy [J].
Cui, Ning ;
Kong, Fantao ;
Wang, Xiaopeng ;
Chen, Yuyong ;
Zhou, Haitao .
MATERIALS & DESIGN, 2016, 89 :1020-1027
[4]   Phase transformation mechanisms involved in two-phase TiAl-based alloys .1. Lamellar structure formation [J].
Denquin, A ;
Naka, S .
ACTA MATERIALIA, 1996, 44 (01) :343-352
[5]   Development and evaluation of TiAl sheet structures for hypersonic applications [J].
Draper, S. L. ;
Krause, D. ;
Lerch, B. ;
Locci, I. E. ;
Doehnert, B. ;
Nigam, R. ;
Das, G. ;
Sickles, P. ;
Tabernig, B. ;
Reger, N. ;
Rissbacher, K. .
MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2007, 464 (1-2) :330-342
[6]   EFFECTS OF MICROSTRUCTURE ON THE DEFORMATION AND FRACTURE OF GAMMA-TIAL ALLOYS [J].
KIM, YW .
MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 1995, 192 :519-533
[7]  
Koizumi Y., 2001, ATER RES SOC S P, V705
[8]  
Koizumi Y., 2008, MATER RES SOC S P, V1086
[9]   Evolution of antiphase domain (APD)/lamella mixed microstructure in Ti-39 at%Al single crystals [J].
Koizumi, Yuichiro ;
Iwamoto, Kazuki ;
Tanaka, Takayuki ;
Tsuji, Nobuhiro ;
Minamino, Yoritoshi .
MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2008, 478 (1-2) :147-153
[10]   Effect of pack rolling on microstructures and tensile properties of as-forged Ti-44Al-6V-3Nb-0.3Y alloy [J].
Niu, H. Z. ;
Kong, F. T. ;
Kiao, S. L. ;
Chen, Y. Y. ;
Yang, F. .
INTERMETALLICS, 2012, 21 (01) :97-104