Dirichlet spaces on H-convex sets in Wiener space

被引:11
作者
Hino, Masanori [1 ]
机构
[1] Kyoto Univ, Grad Sch Informat, Kyoto 6068501, Japan
来源
BULLETIN DES SCIENCES MATHEMATIQUES | 2011年 / 135卷 / 6-7期
关键词
Dirichlet space; Convex set; Wiener space; RADEMACHERS THEOREM; BV FUNCTIONS; FORMS;
D O I
10.1016/j.bulsci.2011.07.008
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the (1, 2)-Sobolev space W-1,W-2(U) on subsets U in an abstract Wiener space, which is regarded as a canonical Dirichlet space on U. We prove that W-1,W-2 (U) has smooth cylindrical functions as a dense subset if U is H-convex and H-open. For the proof, the relations between H-notions and quasi-notions are also studied. (C) 2011 Elsevier Masson SAS. All rights reserved.
引用
收藏
页码:667 / 683
页数:17
相关论文
共 43 条
[31]   The Existence of Unbounded Closed Convex Sets with Trivial Recession Cone in Normed Spaces [J].
Huynh The Phung .
ACTA MATHEMATICA VIETNAMICA, 2016, 41 (02) :277-282
[32]   Onto interpolation for the Dirichlet space and for H1 (D) [J].
Chalmoukis, Nikolaos .
ADVANCES IN MATHEMATICS, 2021, 381
[33]   Finding best approximation pairs relative to two closed convex sets in Hilbert spaces [J].
Bauschke, HH ;
Combettes, PL ;
Luke, DR .
JOURNAL OF APPROXIMATION THEORY, 2004, 127 (02) :178-192
[34]   On Antiproximal Closed Radially Bounded Convex Sets in the l1-Space [J].
Balaganskii, V. S. .
MATHEMATICAL NOTES, 2008, 84 (5-6) :729-732
[35]   More on exposed points and extremal points of convex sets in Rn and Hilbert space [J].
Barov, Stoyu T. .
COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE, 2023, 64 (01) :63-72
[36]   On antiproximal closed radially bounded convex sets in the l1-space [J].
V. S. Balaganskii .
Mathematical Notes, 2008, 84 :729-732
[37]   Scale space displacement of zero-crossings of del(2)G operated images for convex bodies and convex sets [J].
Sengupta, S ;
Sahasrabudhe, SC .
SIGNAL PROCESSING, 1995, 47 (03) :279-285
[38]   Finding the projection of a point onto the intersection of convex sets via projections onto half-spaces [J].
Bregman, LM ;
Censor, Y ;
Reich, S ;
Zepkowitz-Malachi, Y .
JOURNAL OF APPROXIMATION THEORY, 2003, 124 (02) :194-218
[39]   Volterra-type operators mapping weighted Dirichlet space into H8 [J].
Pelaez, Jose Angel ;
Rattya, Jouni ;
Wu, Fanglei .
MATHEMATISCHE ZEITSCHRIFT, 2023, 304 (02)
[40]   The Admissibility and the AR-Property of Some Unbounded Convex Sets in a Class of Non-locally Convex Spaces Containing l (p) (0 < p < 1) [J].
Nguyen Hoang Thanh .
VIETNAM JOURNAL OF MATHEMATICS, 2014, 42 (02) :191-203