Dirichlet spaces on H-convex sets in Wiener space

被引:11
作者
Hino, Masanori [1 ]
机构
[1] Kyoto Univ, Grad Sch Informat, Kyoto 6068501, Japan
来源
BULLETIN DES SCIENCES MATHEMATIQUES | 2011年 / 135卷 / 6-7期
关键词
Dirichlet space; Convex set; Wiener space; RADEMACHERS THEOREM; BV FUNCTIONS; FORMS;
D O I
10.1016/j.bulsci.2011.07.008
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the (1, 2)-Sobolev space W-1,W-2(U) on subsets U in an abstract Wiener space, which is regarded as a canonical Dirichlet space on U. We prove that W-1,W-2 (U) has smooth cylindrical functions as a dense subset if U is H-convex and H-open. For the proof, the relations between H-notions and quasi-notions are also studied. (C) 2011 Elsevier Masson SAS. All rights reserved.
引用
收藏
页码:667 / 683
页数:17
相关论文
共 43 条
[21]   SETS WITH FINITE PERIMETER IN WIENER SPACES, PERIMETER MEASURE AND BOUNDARY RECTIFIABILITY [J].
Ambrosio, Luigi ;
Miranda, Michele, Jr. ;
Pallara, Diego .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2010, 28 (02) :591-606
[22]   A ball separation property of bounded convex sets in Hilbert spaces [J].
Lian, Xiuguo .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2007, 327 (01) :79-87
[23]   A DETERMINATION OF HELLY NUMBERS OF CONVEX SETS IN TOPOLOGICAL VECTOR SPACES [J].
Shih, Mau-Hsiang ;
Tsai, Feng-Sheng ;
Hsu, Sheng-Yi .
JOURNAL OF NONLINEAR AND CONVEX ANALYSIS, 2018, 19 (01) :115-121
[24]   A TRANSLATION OF AN ANALOGUE OF WIENER SPACE WITH ITS APPLICATIONS ON THEIR PRODUCT SPACES [J].
Cho, Dong Hyun .
COMMUNICATIONS OF THE KOREAN MATHEMATICAL SOCIETY, 2022, 37 (03) :749-763
[25]   Sharp large deviation estimates for a certain class of sets on the Wiener space [J].
Rovira, C ;
Tindel, S .
BULLETIN DES SCIENCES MATHEMATIQUES, 2000, 124 (07) :525-555
[26]   Compactly epi-Lipschitzian convex sets and functions in normed spaces [J].
Borwein, J ;
Lucet, Y ;
Mordukhovich, B .
JOURNAL OF CONVEX ANALYSIS, 2000, 7 (02) :375-393
[27]   Compact composition operators on the Dirichlet space and capacity of sets of contact points [J].
Lefevre, Pascal ;
Li, Daniel ;
Queffelec, Herve ;
Rodriguez-Piazza, Luis .
JOURNAL OF FUNCTIONAL ANALYSIS, 2013, 264 (04) :895-919
[28]   Toward a topological classification of convex sets in infinite-dimensional Frechet spaces [J].
Banakh, T .
TOPOLOGY AND ITS APPLICATIONS, 2001, 111 (03) :241-263
[29]   Extreme points and geometric aspects of compact convex sets in asymmetric normed spaces [J].
Jonard-Perez, Natalia ;
Sanchez Perez, Enrique A. .
TOPOLOGY AND ITS APPLICATIONS, 2016, 203 :12-21
[30]   Topological groups and convex sets homeomorphic to non-separable Hilbert spaces [J].
Banakh, Taras ;
Zarichnyy, Igor .
CENTRAL EUROPEAN JOURNAL OF MATHEMATICS, 2008, 6 (01) :77-86