Dirichlet spaces on H-convex sets in Wiener space

被引:11
|
作者
Hino, Masanori [1 ]
机构
[1] Kyoto Univ, Grad Sch Informat, Kyoto 6068501, Japan
来源
BULLETIN DES SCIENCES MATHEMATIQUES | 2011年 / 135卷 / 6-7期
关键词
Dirichlet space; Convex set; Wiener space; RADEMACHERS THEOREM; BV FUNCTIONS; FORMS;
D O I
10.1016/j.bulsci.2011.07.008
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the (1, 2)-Sobolev space W-1,W-2(U) on subsets U in an abstract Wiener space, which is regarded as a canonical Dirichlet space on U. We prove that W-1,W-2 (U) has smooth cylindrical functions as a dense subset if U is H-convex and H-open. For the proof, the relations between H-notions and quasi-notions are also studied. (C) 2011 Elsevier Masson SAS. All rights reserved.
引用
收藏
页码:667 / 683
页数:17
相关论文
共 43 条
  • [1] Regularity Properties of H-Convex Sets
    Arena, G.
    Caruso, A. O.
    Monti, R.
    JOURNAL OF GEOMETRIC ANALYSIS, 2012, 22 (02) : 583 - 602
  • [2] Uniformly Convex Cone Spaces and Properties of Convex Sets in These Spaces
    Tsarkov, I. G.
    MATHEMATICAL NOTES, 2024, 116 (3-4) : 831 - 840
  • [3] On Zero Sets in the Dirichlet Space
    Karim Kellay
    Javad Mashreghi
    Journal of Geometric Analysis, 2012, 22 : 1055 - 1070
  • [4] On Zero Sets in the Dirichlet Space
    Kellay, Karim
    Mashreghi, Javad
    JOURNAL OF GEOMETRIC ANALYSIS, 2012, 22 (04) : 1055 - 1070
  • [5] Arguments of Zero Sets in the Dirichlet Space
    Mashreghi, Javad
    Ransford, Thomas
    Shabankhah, Mahmood
    HILBERT SPACES OF ANALYTIC FUNCTIONS, 2010, 51 : 143 - 148
  • [6] Cantor sets and cyclicity in weighted Dirichlet spaces
    El-Fallah, O.
    Kellay, K.
    Ransford, T.
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2010, 372 (02) : 565 - 573
  • [7] On sets of finite perimeter in Wiener spaces: reduced boundary and convergence to halfspaces
    Ambrosio, Luigi
    Figalli, Alessio
    Runa, Eris
    RENDICONTI LINCEI-MATEMATICA E APPLICAZIONI, 2013, 24 (01) : 111 - 122
  • [8] Domains of elliptic operators on sets in Wiener space
    Addona, Davide
    Cappa, Gianluca
    Ferrari, Simone
    INFINITE DIMENSIONAL ANALYSIS QUANTUM PROBABILITY AND RELATED TOPICS, 2020, 23 (01)
  • [9] Level sets and composition operators on the Dirichlet space
    El-Fallah, O.
    Kellay, K.
    Shabankhah, M.
    Youssfi, H.
    JOURNAL OF FUNCTIONAL ANALYSIS, 2011, 260 (06) : 1721 - 1733
  • [10] Sets of finite perimeter and the Hausdorff-Gauss measure on the Wiener space
    Hino, Masanori
    JOURNAL OF FUNCTIONAL ANALYSIS, 2010, 258 (05) : 1656 - 1681