Molecular Dynamics Simulations for the Description of Experimental Molecular Conformation, Melt Dynamics, and Phase Transitions in Polyethylene

被引:78
作者
Ramos, Javier [1 ]
Vega, Juan F. [1 ]
Martinez-Salazar, Javier [1 ]
机构
[1] CSIC, Inst Estruct Mat, Dept Fis Macromol, Biophym, Madrid 28006, Spain
关键词
MONTE-CARLO-SIMULATION; CHAIN BRANCHED POLYOLEFINS; INTRINSIC VISCOSITY MEASUREMENTS; VOLUME-TEMPERATURE PROPERTIES; ANGLE NEUTRON-SCATTERING; UNITED-ATOM DESCRIPTION; COOLING-RATE DEPENDENCE; LINEAR POLYMER MELTS; GLASS-TRANSITION; ATOMISTIC SIMULATION;
D O I
10.1021/acs.macromol.5b00823
中图分类号
O63 [高分子化学(高聚物)];
学科分类号
070305 ; 080501 ; 081704 ;
摘要
Long molecular dynamics simulations of the melt dynamics, glass transition and nonisothermal crystallization of a C-192 polyethylene model have been carried out. In this model, the molecules are sufficiently long to form entanglements in the melt and folds in the crystalline state. On the other hand, the molecules are short enough to enable the use of atomistic simulations on a large scale of time. Two force fields, widely used for polyethylene, are taken into account comparing the simulation results with a broad set of literature experimental data. Although both force fields are able to capture the general physics of the system, TraPPe-UA is in a better quantitative agreement with the experimental data.. According With the simulation results some fundamental aspects of polyethylene physical parameters are discussed Such as the characteristic ratio (C-n = 8.2 and 7.6 at 1500 K, for TraPPe-UA and PYS force fields, respectively), the isothermal compressibility (alpha = 8.57 x 10(-4) K-1), the static structure factor and the Melt dynamics regimes corresponding to an entangled polymer. Furthermore, the simulated T-g (187.0 K) obtained for linear PE is in a very good agreement with the extrapolated T-g values (185-195 K) using the Gordon-Taylor equation. Finally, the simulation of the nonisothermal crystallization process supports the view of a mixed State of adjacent and nonadjacent re-entry model. The simulated two phase model reproduces very well the initial fold length expected for high supercoolings and the segregation of the system in ordered and disordered. layers. The paper highlights the importance Of Combining simulation techniques with experimental data as a powerful means to explain the polymer physics.
引用
收藏
页码:5016 / 5027
页数:12
相关论文
共 50 条
  • [41] Parameterization of electrostatic interactions for molecular dynamics simulations of heterocyclic polymers
    Nazarychev, Victor M.
    Larin, Sergey V.
    Yakimansky, Alexander V.
    Lukasheva, Natalia V.
    Gurtovenko, Andrey A.
    Gofman, Iosif V.
    Yudin, Vladimir E.
    Svetlichnyi, Valentin M.
    Kenny, Jose M.
    Lyulin, Sergey V.
    JOURNAL OF POLYMER SCIENCE PART B-POLYMER PHYSICS, 2015, 53 (13) : 912 - 923
  • [42] Material property prediction of thermoset polymers by molecular dynamics simulations
    Chunyu Li
    Eric Coons
    Alejandro Strachan
    Acta Mechanica, 2014, 225 : 1187 - 1196
  • [43] A review of advancements in coarse-grained molecular dynamics simulations
    Joshi, Soumil Y.
    Deshmukh, Sanket A.
    MOLECULAR SIMULATION, 2021, 47 (10-11) : 786 - 803
  • [44] Molecular Dynamics Simulations of Water Sorption in a Perfluorosulfonic Acid Membrane
    Daly, Kevin B.
    Benziger, Jay B.
    Debenedetti, Pablo G.
    Panagiotopoulos, Athanassios Z.
    JOURNAL OF PHYSICAL CHEMISTRY B, 2013, 117 (41) : 12649 - 12660
  • [45] On the energy conservation during the active deformation in molecular dynamics simulations
    Yang, Fan
    Zhong, Zheng
    JOURNAL OF THE MECHANICS AND PHYSICS OF SOLIDS, 2015, 77 : 146 - 157
  • [46] Computations of Standard Binding Free Energies with Molecular Dynamics Simulations
    Deng, Yuqing
    Roux, Benoit
    JOURNAL OF PHYSICAL CHEMISTRY B, 2009, 113 (08) : 2234 - 2246
  • [47] Insights into Noncovalent Binding Obtained from Molecular Dynamics Simulations
    Baz, Joerg
    Gebhardt, Julia
    Kraus, Hamzeh
    Markthaler, Daniel
    Hansen, Niels
    CHEMIE INGENIEUR TECHNIK, 2018, 90 (11) : 1864 - 1875
  • [48] Molecular dynamics simulations of ballistic He penetration into W fuzz
    Klaver, T. P. C.
    Nordlund, K.
    Morgan, T. W.
    Westerhof, E.
    Thijsse, B. J.
    van de Sanden, M. C. M.
    NUCLEAR FUSION, 2016, 56 (12)
  • [49] Molecular Dynamics Simulations of Nonionic Surfactant at the Air/water Interface
    Li Xiaofeng
    Li Yingcheng
    Wu Zhiyong
    Xie Zaiku
    Fan Kangnian
    ACTA CHIMICA SINICA, 2011, 69 (19) : 2235 - 2240
  • [50] Molecular dynamics simulations of glycerol glass-forming liquid
    Blieck, J
    Affouard, F
    Bordat, P
    Lerbret, A
    Descamps, M
    CHEMICAL PHYSICS, 2005, 317 (2-3) : 253 - 257