Molecular and biochemical characterization of the Fe(III) chelate reductase gene family in Arabidopsis thaliana

被引:115
作者
Wu, HL
Li, LH
Du, J
Yuan, YX
Cheng, XD
Ling, HQ
机构
[1] Chinese Acad Sci, Inst Genet & Dev Biol, State Key Lab Plant Cell & Chromosome Engn, Beijing 100101, Chaoyang Dist, Peoples R China
[2] Chinese Acad Sci, Grad Sch, Beijing 100039, Shijingshan Dis, Peoples R China
基金
中国国家自然科学基金;
关键词
Arabidopsis; AtFROs; Fe(III) chelate reductase; gene family; iron homeostasis;
D O I
10.1093/pcp/pci163
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Iron chelate reductase is required for iron acquisition from soil and for metabolism in plants. In the genome of Arabidopsis thaliana there are eight genes classified into the iron chelate reductase gene family (AtFROs) based on sequence homology with AtFRO2 (a ferric chelate reductase in Arabidopsis). They are localized on chromosome 1 (three AtFROs) and chromosome 5 (five AtFROs) of Arabidopsis and show a high level of amino acid sequence similarity to each other. An assay for ferric chelate reductase activity revealed that AtFRO2, AtFRO3, AtFRO4, AtFRO5, AtFRO7 and AtFRO8 conferred significantly increased iron reduction activity compared with the control when expressed in yeast cells, indicating that the six AtFROs encode iron chelate reductases functioning in iron homeostasis in Arabidopsis. AtFRO2 displayed the highest iron reduction activity among the AtFROs investigated, further demonstrating that AtFRO2 is a major iron reductase gene in Arabidopsis. AIFRO2 and AtFRO3 were mainly expressed in roots of Arabidopsis, AtFRO5 and AtFRO6 in shoots and flowers, and AIFRO7 in cotyledons and trichomes, whereas the transcription of AtFRO8 was specific for leaf veins. Considering the tissue-specific expression profiles of AtFRO genes, we suggest that AtFRO2 and AtFRO3 are two Fe(III) chelate reductases mainly functioning in iron acquisition and metabolism in Arabidopsis roots, while AtFRO5, AtFRO6, AtFRO7 and AtFRO8 are required for iron homeostasis in different tissues of shoots.
引用
收藏
页码:1505 / 1514
页数:10
相关论文
共 38 条
[1]   Analysis of sequence, map position, and gene expression reveals conserved essential genes for iron uptake in Arabidopsis and tomato [J].
Bauer, P ;
Thiel, T ;
Klatte, M ;
Bereczky, Z ;
Brumbarova, T ;
Hell, R ;
Grosse, I .
PLANT PHYSIOLOGY, 2004, 136 (04) :4169-4183
[2]   CHARACTERIZATION OF FERRIC REDUCING ACTIVITY IN ROOTS OF FE-DEFICIENT PHASEOLUS-VULGARIS [J].
BIENFAIT, HF ;
BINO, RJ ;
VANDERBLIEK, AM ;
DUIVENVOORDEN, JF ;
FONTAINE, JM .
PHYSIOLOGIA PLANTARUM, 1983, 59 (02) :196-202
[3]   Extensive duplication and reshuffling in the arabidopsis genome [J].
Blanc, G ;
Barakat, A ;
Guyot, R ;
Cooke, R ;
Delseny, I .
PLANT CELL, 2000, 12 (07) :1093-1101
[4]   IRON-STRESS INDUCED REDOX ACTIVITY IN TOMATO (LYCOPERSICUM-ESCULENTUM MILL) IS LOCALIZED ON THE PLASMA-MEMBRANE [J].
BUCKHOUT, TJ ;
BELL, PF ;
LUSTER, DG ;
CHANEY, RL .
PLANT PHYSIOLOGY, 1989, 90 (01) :151-156
[5]   Floral dip:: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana [J].
Clough, SJ ;
Bent, AF .
PLANT JOURNAL, 1998, 16 (06) :735-743
[6]   The essential basic helix-loop-helix protein FIT1 is required for the iron deficiency response [J].
Colangelo, EP ;
Guerinot, ML .
PLANT CELL, 2004, 16 (12) :3400-3412
[7]   Overexpression of the FRO2 ferric chelate reductase confers tolerance to growth on low iron and uncovers posttranscriptional control [J].
Connolly, EL ;
Campbell, NH ;
Grotz, N ;
Prichard, CL ;
Guerinot, ML .
PLANT PHYSIOLOGY, 2003, 133 (03) :1102-1110
[8]   Expression of the IRT1 metal transporter is controlled by metals at the levels of transcript and protein accumulation [J].
Connolly, EL ;
Fett, JP ;
Guerinot, ML .
PLANT CELL, 2002, 14 (06) :1347-1357
[9]   Ferric chelate reduction by sunflower (Helianthus annuus L) leaves: Influence of light, oxygen, iron-deficiency and leaf age [J].
delaGuardia, MD ;
Alcantara, E .
JOURNAL OF EXPERIMENTAL BOTANY, 1996, 47 (298) :669-675
[10]   A novel iron-regulated metal transporter from plants identified by functional expression in yeast [J].
Eide, D ;
Broderius, M ;
Fett, J ;
Guerinot, ML .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1996, 93 (11) :5624-5628