The Cauchy problem for properly hyperbolic equations in one space variable

被引:3
作者
Spagnolo, Sergio [1 ]
Taglialatela, Giovanni [2 ]
机构
[1] Univ Pisa, Dipartimento Matemat, Largo Bruno Pontecorvo 5, I-56127 Pisa, Italy
[2] Univ Bari Aldo Moro, Dipartimento Econ & Finanza, I-70124 Bari, Italy
关键词
Weakly hyperbolic equation; Cauchy problem; symetrizer; SYMMETRIZATION; PROPAGATION; POLYNOMIALS; OPERATORS; SYSTEMS; ROOTS;
D O I
10.1142/S0219891622500138
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
this paper, we consider the Cauchy problem for higher-order weakly hyperbolic equations assuming that the principal symbol depends only on one space variable and the characteristic roots tau(j) verify an inequality like tau(2)(j) (x) + tau(2 )(k)(x) <= M (tau(j) (x) - tau(k) (x))(2). We prove that the Cauchy problem is well-posed in C-infinity if the operators with frozen coefficients are uniformly hyperbolic in the sense of Garding.
引用
收藏
页码:439 / 466
页数:28
相关论文
共 31 条
[11]   Weakly hyperbolic equations with non-analytic coefficients and lower order terms [J].
Garetto, Claudia ;
Ruzhansky, Michael .
MATHEMATISCHE ANNALEN, 2013, 357 (02) :401-440
[13]   Third order homogeneous weakly hyperbolic equations with nonanalytic coefficients [J].
Jannelli, E. ;
Taglialatela, G. .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2014, 418 (02) :1006-1029
[14]   Homogeneous weakly hyperbolic equations with time dependent analytic coefficients [J].
Jannelli, Enrico ;
Taglialatela, Giovanni .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2011, 251 (4-5) :995-1029
[15]  
Jannelli E, 2009, PROG NONLINEAR DIFFE, V78, P113, DOI 10.1007/978-0-8176-4861-9_7
[16]   Hyperbolic equations with non-analytic coefficients [J].
Kinoshita, Tamotu ;
Spagnolo, Sergio .
MATHEMATISCHE ANNALEN, 2006, 336 (03) :551-569
[17]  
Nishitani T., 2013, MSJ MEMOIRS, V30
[18]   Diagonal symmetrizers for hyperbolic operators with triple characteristics [J].
Nishitani, Tatsuo .
MATHEMATISCHE ANNALEN, 2022, 383 (1-2) :529-569
[19]  
Nishitani T, 2020, OSAKA J MATH, V57, P597
[20]   Notes on symmetrization by Bezoutiant [J].
Nishitani, Tatsuo .
BOLLETTINO DELLA UNIONE MATEMATICA ITALIANA, 2020, 13 (03) :417-428