The Cauchy problem for properly hyperbolic equations in one space variable

被引:3
作者
Spagnolo, Sergio [1 ]
Taglialatela, Giovanni [2 ]
机构
[1] Univ Pisa, Dipartimento Matemat, Largo Bruno Pontecorvo 5, I-56127 Pisa, Italy
[2] Univ Bari Aldo Moro, Dipartimento Econ & Finanza, I-70124 Bari, Italy
关键词
Weakly hyperbolic equation; Cauchy problem; symetrizer; SYMMETRIZATION; PROPAGATION; POLYNOMIALS; OPERATORS; SYSTEMS; ROOTS;
D O I
10.1142/S0219891622500138
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
this paper, we consider the Cauchy problem for higher-order weakly hyperbolic equations assuming that the principal symbol depends only on one space variable and the characteristic roots tau(j) verify an inequality like tau(2)(j) (x) + tau(2 )(k)(x) <= M (tau(j) (x) - tau(k) (x))(2). We prove that the Cauchy problem is well-posed in C-infinity if the operators with frozen coefficients are uniformly hyperbolic in the sense of Garding.
引用
收藏
页码:439 / 466
页数:28
相关论文
共 31 条
[1]  
[Anonymous], 1985, IV, volume 275 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences]
[2]  
[Anonymous], 1985, Bull. Fac. Gen. Ed. Gifu Univ
[3]  
[Anonymous], 2006, Sci. Math. Jpn.
[4]  
Bernardi E., 2006, PROGR NONLINEAR DIFF, V69, P29
[5]  
BRONSHTEIN MD, 1979, SIBERIAN MATH J+, V20, P347
[6]   Well-posedness in C∞ for some weakly hyperbolic equations [J].
Colombini, F ;
Orrú, N .
JOURNAL OF MATHEMATICS OF KYOTO UNIVERSITY, 1999, 39 (03) :399-420
[7]  
D'Ancona P, 1998, B UNIONE MAT ITAL, V1B, P169
[8]   SUFFICIENT CONDITION FOR HYPERBOLICITY OF PARTIAL-DIFFERENTIAL OPERATORS WITH CONSTANT COEFFICIENT PRINCIPAL PART [J].
DUNN, JL .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1975, 201 (JAN) :315-327
[9]  
Fisk S., 2006, POLYNOMIALS ROOTS IN
[10]  
GARDING L, 1951, ACTA MATH-DJURSHOLM, V85, P1