Exact rational solutions to a Boussinesq-like equation in (1+1)-dimensions

被引:45
作者
Shi, Chang-Guang [1 ]
Zhao, Bao-Zhu [1 ]
Ma, Wen-Xiu [1 ,2 ]
机构
[1] Shanghai Univ Elect Power, Coll Math & Phys, Shanghai 200090, Peoples R China
[2] Univ S Florida, Dept Math & Stat, Tampa, FL 33620 USA
基金
上海市自然科学基金;
关键词
Rational solution; Boussinesq equation; Generalized bilinear form; TRAVELING-WAVE SOLUTIONS; PETVIASHVILI KP EQUATION; BILINEAR EQUATIONS; RESONANT SOLUTIONS; BELL POLYNOMIALS; FORM;
D O I
10.1016/j.aml.2015.04.002
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A Boussinesq-like nonlinear differential equation in (1 + 1)-dimensions is introduced by using a generalized bilinear differential equation with the generalized bilinear derivatives D-3,D-x and D-3,D-t. A class of rational solutions, generated from polynomial solutions to the associated generalized bilinear equation, is constructed for the presented Boussinesq-like equation. It is conjectured that this class of rational solutions contain all such rational solutions to the new Boussinesq-like equation. More concretely, the conjecture says that if a polynomial f = f(x, t) in x and t solves f(ttf) f - f(t)(2) + 3f(xx)(2) = 0, then the degree of f with respect to t must be less than or equal to 1. (C) 2015 Elsevier Ltd. All rights reserved.
引用
收藏
页码:170 / 176
页数:7
相关论文
共 27 条
[1]  
Ablowitz M.J., 1991, SOLITONS NONLINEAR E
[2]   Recent progress in investigating optical rogue waves [J].
Akhmediev, N. ;
Dudley, J. M. ;
Solli, D. R. ;
Turitsyn, S. K. .
JOURNAL OF OPTICS, 2013, 15 (06)
[3]   Generalized Bilinear Differential Operators, Binary Bell Polynomials, and Exact Periodic Wave Solution of Boiti-Leon-Manna-Pempinelli Equation [J].
Dong, Huanhe ;
Zhang, Yanfeng ;
Zhang, Yongfeng ;
Yin, Baoshu .
ABSTRACT AND APPLIED ANALYSIS, 2014,
[4]   Nonlinear Schrodinger equation: Generalized Darboux transformation and rogue wave solutions [J].
Guo, Boling ;
Ling, Liming ;
Liu, Q. P. .
PHYSICAL REVIEW E, 2012, 85 (02)
[5]  
Hirota R., 2004, The Direct Method in Soliton Theory, DOI 10.1017/CBO9780511543043
[6]   New exact traveling wave solutions of the (3+1) dimensional Kadomtsev-Petviashvili (KP) equation [J].
Khalfallah, Mohammed .
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2009, 14 (04) :1169-1175
[7]  
Kharif C, 2009, ADV GEOPHYS ENV MECH, P1, DOI 10.1007/978-3-540-88419-4_1
[8]   The Cauchy problem for the equation of the Burgers hierarchy [J].
Kudryashov, Nikolai A. ;
Sinelshchikov, Dmitry I. .
NONLINEAR DYNAMICS, 2014, 76 (01) :561-569
[9]  
Ma W.X., 2011, Studies Nonl. Sci, V2, P140
[10]  
Ma W.X., CHAOS SOLITONS FRACT