Real-Time Arrhythmia Detection Using Hybrid Convolutional Neural Networks

被引:17
作者
Bollepalli, Sandeep Chandra [1 ]
Sevakula, Rahul K. [1 ]
Au-Yeung, Wan-Tai M. [1 ]
Kassab, Mohamad B. [1 ]
Merchant, Faisal M. [4 ]
Bazoukis, George [5 ]
Boyer, Richard [2 ]
Isselbacher, Eric M. [3 ]
Armoundas, Antonis A. [1 ,6 ]
机构
[1] Massachusetts Gen Hosp, Cardiovasc Res Ctr, Boston, MA 02114 USA
[2] Massachusetts Gen Hosp, Anesthesia Dept, Boston, MA 02114 USA
[3] Massachusetts Gen Hosp, Healthcare Transformat Lab, Boston, MA 02114 USA
[4] Emory Univ, Sch Med, Cardiol Div, Atlanta, GA USA
[5] Evangelismos Gen Hosp Athens, Dept Cardiol 2, Athens, Greece
[6] MIT, Inst Med Engn & Sci, 77 Massachusetts Ave, Cambridge, MA 02139 USA
来源
JOURNAL OF THE AMERICAN HEART ASSOCIATION | 2021年 / 10卷 / 23期
基金
美国国家卫生研究院;
关键词
convolutional neural networks; false alarms; intensive care unit monitors; machine learning; multi-class classification; FALSE ALARM REDUCTION; ARTERIAL-BLOOD PRESSURE; SIGNAL-QUALITY; ELECTROCARDIOGRAM; CLASSIFICATION; ICU; SUPPRESSION; MORPHOLOGY; MONITORS; RHYTHM;
D O I
10.1161/JAHA.121.023222
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Background Accurate detection of arrhythmic events in the intensive care units (ICU) is of paramount significance in providing timely care. However, traditional ICU monitors generate a high rate of false alarms causing alarm fatigue. In this work, we develop an algorithm to improve life threatening arrhythmia detection in the ICUs using a deep learning approach. Methods and Results This study involves a total of 953 independent life-threatening arrhythmia alarms generated from the ICU bedside monitors of 410 patients. Specifically, we used the ECG (4 channels), arterial blood pressure, and photoplethysmograph signals to accurately detect the onset and offset of various arrhythmias, without prior knowledge of the alarm type. We used a hybrid convolutional neural network based classifier that fuses traditional handcrafted features with features automatically learned using convolutional neural networks. Further, the proposed architecture remains flexible to be adapted to various arrhythmic conditions as well as multiple physiological signals. Our hybrid- convolutional neural network approach achieved superior performance compared with methods which only used convolutional neural network. We evaluated our algorithm using 5-fold cross-validation for 5 times and obtained an accuracy of 87.5%+/- 0.5%, and a score of 81%+/- 0.9%. Independent evaluation of our algorithm on the publicly available PhysioNet 2015 Challenge database resulted in overall classification accuracy and score of 93.9% and 84.3%, respectively, indicating its efficacy and generalizability. Conclusions Our method accurately detects multiple arrhythmic conditions. Suitable translation of our algorithm may significantly improve the quality of care in ICUs by reducing the burden of false alarms.
引用
收藏
页数:74
相关论文
共 37 条
[1]   Reducing false alarm rates for critical arrhythmias using the arterial blood pressure waveform. [J].
Aboukhalil, Anton ;
Nielsen, Larry ;
Saeed, Mohammed ;
Mark, Roger G. ;
Clifford, Gari D. .
JOURNAL OF BIOMEDICAL INFORMATICS, 2008, 41 (03) :442-451
[2]   Permutation importance: a corrected feature importance measure [J].
Altmann, Andre ;
Tolosi, Laura ;
Sander, Oliver ;
Lengauer, Thomas .
BIOINFORMATICS, 2010, 26 (10) :1340-1347
[3]   Suppression of false arrhythmia alarms in the ICU: a machine learning approach [J].
Ansari, Sardar ;
Belle, Ashwin ;
Ghanbari, Hamid ;
Salamango, Mark ;
Najarian, Kayvan .
PHYSIOLOGICAL MEASUREMENT, 2016, 37 (08) :1186-1203
[4]   Reducing false alarms in the ICU by quantifying self-similarity of multimodal biosignals [J].
Antink, Christoph Hoog ;
Leonhardt, Steffen ;
Walter, Marian .
PHYSIOLOGICAL MEASUREMENT, 2016, 37 (08) :1233-1252
[5]  
Au-Yeung W-TM., 2021, CARDIAC BIOELECTRIC, P335
[6]   Real-time machine learning-based intensive care unit alarm classification without prior knowledge of the underlying rhythm [J].
Au-Yeung, Wan-Tai M. ;
Sevakula, Rahul K. ;
Sahani, Ashish K. ;
Kassab, Mohamad ;
Boyer, Richard ;
Isselbacher, Eric M. ;
Armoundas, Antonis A. .
EUROPEAN HEART JOURNAL - DIGITAL HEALTH, 2021, 2 (03) :437-445
[7]   Reduction of false alarms in the intensive care unit using an optimized machine learning based approach [J].
Au-Yeung, Wan-Tai M. ;
Sahani, Ashish K. ;
Isselbacher, Eric M. ;
Armoundas, Antonis A. .
NPJ DIGITAL MEDICINE, 2019, 2 (1)
[8]   Machine learning versus conventional clinical methods in guiding management of heart failure patients-a systematic review [J].
Bazoukis, George ;
Stavrakis, Stavros ;
Zhou, Jiandong ;
Bollepalli, Sandeep Chandra ;
Tse, Gary ;
Zhang, Qingpeng ;
Singh, Jagmeet P. ;
Armoundas, Antonis A. .
HEART FAILURE REVIEWS, 2021, 26 (01) :23-34
[9]   Robust Heartbeat Detection From Multimodal Data via CNN-Based Generalizable Information Fusion [J].
Chandra, B. S. ;
Sastry, C. S. ;
Jana, S. .
IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 2019, 66 (03) :710-717
[10]   False alarm reduction in critical care [J].
Clifford, Gari D. ;
Silva, Ikaro ;
Moody, Benjamin ;
Li, Qiao ;
Kella, Danesh ;
Chahin, Abdullah ;
Kooistra, Tristan ;
Perry, Diane ;
Mark, Roger G. .
PHYSIOLOGICAL MEASUREMENT, 2016, 37 (08) :E5-E23