attract: A Method for Identifying Core Pathways That Define Cellular Phenotypes

被引:44
作者
Mar, Jessica C. [1 ,2 ]
Matigian, Nicholas A. [3 ]
Quackenbush, John [1 ,2 ,3 ,4 ]
Wells, Christine A. [3 ,5 ]
机构
[1] Harvard Univ, Sch Publ Hlth, Dept Biostat, Boston, MA 02115 USA
[2] Dana Farber Canc Inst, Dept Biostat & Computat Biol, Boston, MA 02115 USA
[3] Griffith Univ, Natl Ctr Adult Stem Cell Res, Eskitis Inst Cell & Mol Therapies, Brisbane, Qld 4111, Australia
[4] Dana Farber Canc Inst, Dept Canc Biol, Boston, MA 02115 USA
[5] Univ Queensland, Australian Inst Bioengn & Nanotechnol, Brisbane, Qld, Australia
基金
澳大利亚研究理事会; 英国医学研究理事会;
关键词
SET ENRICHMENT ANALYSIS; GENE;
D O I
10.1371/journal.pone.0025445
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
attract is a knowledge-driven analytical approach for identifying and annotating the gene-sets that best discriminate between cell phenotypes. attract finds distinguishing patterns within pathways, decomposes pathways into meta-genes representative of these patterns, and then generates synexpression groups of highly correlated genes from the entire transcriptome dataset. attract can be applied to a wide range of biological systems and is freely available as a Bioconductor package and has been incorporated into the MeV software system.
引用
收藏
页数:7
相关论文
共 16 条
[1]   CONTROLLING THE FALSE DISCOVERY RATE - A PRACTICAL AND POWERFUL APPROACH TO MULTIPLE TESTING [J].
BENJAMINI, Y ;
HOCHBERG, Y .
JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 1995, 57 (01) :289-300
[2]   DAVID: Database for annotation, visualization, and integrated discovery [J].
Dennis, G ;
Sherman, BT ;
Hosack, DA ;
Yang, J ;
Gao, W ;
Lane, HC ;
Lempicki, RA .
GENOME BIOLOGY, 2003, 4 (09)
[3]   Geometric Interpretation of Gene Coexpression Network Analysis [J].
Horvath, Steve ;
Dong, Jun .
PLOS COMPUTATIONAL BIOLOGY, 2008, 4 (08)
[4]   Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources [J].
Huang, Da Wei ;
Sherman, Brad T. ;
Lempicki, Richard A. .
NATURE PROTOCOLS, 2009, 4 (01) :44-57
[5]   Gene set enrichment analysis made simple [J].
Irizarry, Rafael A. ;
Wang, Chi ;
Zhou, Yun ;
Speed, Terence P. .
STATISTICAL METHODS IN MEDICAL RESEARCH, 2009, 18 (06) :565-575
[6]   Extensions to gene set enrichment [J].
Jiang, Zhen ;
Gentleman, Robert .
BIOINFORMATICS, 2007, 23 (03) :306-313
[7]   KEGG: Kyoto Encyclopedia of Genes and Genomes [J].
Kanehisa, M ;
Goto, S .
NUCLEIC ACIDS RESEARCH, 2000, 28 (01) :27-30
[8]   Defining an informativeness metric for clustering gene expression data [J].
Mar, Jessica C. ;
Wells, Christine A. ;
Quackenbush, John .
BIOINFORMATICS, 2011, 27 (08) :1094-1100
[9]   Signed weighted gene co-expression network analysis of transcriptional regulation in murine embryonic stem cells [J].
Mason, Mike J. ;
Fan, Guoping ;
Plath, Kathrin ;
Zhou, Qing ;
Horvath, Steve .
BMC GENOMICS, 2009, 10
[10]   Regulatory networks define phenotypic classes of human stem cell lines [J].
Mueller, Franz-Josef ;
Laurent, Louise C. ;
Kostka, Dennis ;
Ulitsky, Igor ;
Williams, Roy ;
Lu, Christina ;
Park, In-Hyun ;
Rao, Mahendra S. ;
Shamir, Ron ;
Schwartz, Philip H. ;
Schmidt, Nils O. ;
Loring, Jeanne F. .
NATURE, 2008, 455 (7211) :401-U55