A regression-based smoothing spline Monte Carlo algorithm for pricing American options in discrete time

被引:13
作者
Kohler, Michael [1 ]
机构
[1] Tech Univ Darmstadt, Dept Math, D-64289 Darmstadt, Germany
关键词
American options; consistency; nonparametric regression; optimal stopping; rate of convergence; regression based Monte Carlo methods; smoothing spline;
D O I
10.1007/s10182-008-0067-0
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
American options in discrete time can be priced by solving optimal stopping problems. This can be done by computing so-called continuation values, which we represent as regression functions defined recursively by using the continuation values of the next time step. We use Monte Carlo to generate data, and then we apply smoothing spline regression estimates to estimate the continuation values from these data. All parameters of the estimate are chosen data dependent. We present results concerning consistency and the estimates' rate of convergence.
引用
收藏
页码:153 / 178
页数:26
相关论文
共 26 条
  • [1] Chow Y. S., 1971, Great Expectations: The Theory of Optimal Stopping
  • [2] COVER T. M., 1968, Proc. Int. Conf. on System Science, P413
  • [3] DEVROYE L, 1982, VERW GEB, V61, P467
  • [4] DIPPON J, 2006, SMOOTHING SPLINE REG
  • [5] DUCHON J, 1976, REV FR AUTOMAT INFOR, V10, P5
  • [6] Monte Carlo algorithms for optimal stopping and statistical learning
    Egloff, D
    [J]. ANNALS OF APPLIED PROBABILITY, 2005, 15 (02) : 1396 - 1432
  • [7] A dynamic look-ahead Monte Carlo algorithm for pricing Bermudan options
    Egloff, Daniel
    Kohler, Michael
    Todorovic, Nebojsa
    [J]. ANNALS OF APPLIED PROBABILITY, 2007, 17 (04) : 1138 - 1171
  • [8] Eubank R.L., 1988, SPLINE SMOOTHING NON
  • [9] Estimating market risk with neural networks
    Franke, Juergen
    Diagne, Mabouba
    [J]. STATISTICS & RISK MODELING, 2006, 24 (02) : 233 - 253
  • [10] Glasserman P, 2004, ANN APPL PROBAB, V14, P2090, DOI 10.1214/105051604000000846