Rough singular integrals associated to surfaces of revolution

被引:24
作者
Lu, SZ [1 ]
Pan, YB
Yang, DC
机构
[1] Beijing Normal Univ, Dept Math, Beijing 100875, Peoples R China
[2] City Univ Hong Kong, Dept Math, Kowloon, Hong Kong, Peoples R China
关键词
curve; surface of revolution; singular integral; maximal operator; rough kernel; Hardy space; sphere;
D O I
10.1090/S0002-9939-01-05893-2
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let 1 < p < infinity and n greater than or equal to 2. The authors establish the L-p (Rn+1)-boundedness for a class of singular integral operators associated to surfaces of revolution, {(t, phi(\t\)) : t is an element of R-n}, with rough kernels, provided that the corresponding maximal function along the plane curve {(t, phi(\t\)) : t is an element of R} is bounded on L-p (R-2).
引用
收藏
页码:2931 / 2940
页数:10
相关论文
共 13 条
[1]   OPERATORS ASSOCIATED TO FLAT PLANE-CURVES - LP-ESTIMATES VIA DILATION METHODS [J].
CARBERY, A ;
CHRIST, M ;
VANCE, J ;
WAINGER, S ;
WATSON, DK .
DUKE MATHEMATICAL JOURNAL, 1989, 59 (03) :675-700
[2]   LP ESTIMATES FOR MAXIMAL FUNCTIONS AND HILBERT-TRANSFORMS ALONG FLAT CONVEX CURVES IN R2 [J].
CARLSSON, H ;
CHRIST, M ;
CORDOBA, A ;
DUOANDIKOETXEA, J ;
DEFRANCIA, JLR ;
VANCE, J ;
WAINGER, S ;
WEINBERG, D .
BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1986, 14 (02) :263-267
[3]   On singular integrals along surfaces related to black spaces [J].
Chen, LK ;
Fan, D .
INTEGRAL EQUATIONS AND OPERATOR THEORY, 1997, 29 (03) :261-268
[4]   EXTENSIONS OF HARDY SPACES AND THEIR USE IN ANALYSIS [J].
COIFMAN, RR ;
WEISS, G .
BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1977, 83 (04) :569-645
[5]  
Colzani L., 1982, Ph. D. Thesis
[6]   MAXIMAL AND SINGULAR INTEGRAL-OPERATORS VIA FOURIER-TRANSFORM ESTIMATES [J].
DUOANDIKOETXEA, J ;
DEFRANCIA, JLR .
INVENTIONES MATHEMATICAE, 1986, 84 (03) :541-561
[7]  
FAN D, UNPUB LP ESTIMATES S
[8]  
Fan DS, 1997, AM J MATH, V119, P799
[9]   NOTE ON SINGULAR INTEGRALS [J].
FEFFERMAN, R .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1979, 74 (02) :266-270
[10]   Singular integrals and maximal functions associated to surfaces of revolution [J].
Kim, WJ ;
Wainger, S ;
Wright, J ;
Ziesler, S .
BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 1996, 28 :291-296