Senescence mechanisms and targets in the heart

被引:148
作者
Chen, Maggie S. [1 ,2 ]
Lee, Richard T. [1 ,2 ,3 ,4 ]
Garbern, Jessica C. [1 ,2 ,5 ]
机构
[1] Harvard Univ, Dept Stem Cell & Regenerat Biol, 7 Divin Ave, Cambridge, MA 02138 USA
[2] Harvard Univ, Harvard Stem Cell Inst, 7 Divin Ave, Cambridge, MA 02138 USA
[3] Brigham & Womens Hosp, Dept Med, Div Cardiovasc Med, 75 Francis St, Boston, MA 02115 USA
[4] Harvard Med Sch, 75 Francis St, Boston, MA 02115 USA
[5] Boston Childrens Hosp, Dept Cardiol, 300 Longwood Ave, Boston, MA 02115 USA
基金
美国国家卫生研究院;
关键词
Senescence; Ageing; Cardiovascular disease; Senotherapy; MUSCLE-CELL SENESCENCE; DNA-DAMAGE RESPONSE; SECRETORY PHENOTYPE; HUMAN ATHEROSCLEROSIS; PREMATURE SENESCENCE; PRECISION MEDICINE; SENOLYTIC AGENT; EMERGING ROLE; TELOMERE; EXPRESSION;
D O I
10.1093/cvr/cvab161
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Cellular senescence is a state of irreversible cell cycle arrest associated with ageing. Senescence of different cardiac cell types can direct the pathophysiology of cardiovascular diseases (CVDs) such as atherosclerosis, myocardial infarction, and cardiac fibrosis. While age-related telomere shortening represents a major cause of replicative senescence, the senescent state can also be induced by oxidative stress, metabolic dysfunction, and epigenetic regulation, among other stressors. It is critical that we understand the molecular pathways that lead to cellular senescence and the consequences of cellular senescence in order to develop new therapeutic approaches to treat CVD. In this review, we discuss molecular mechanisms of cellular senescence, explore how cellular senescence of different cardiac cell types (including cardiomyocytes, cardiac endothelial cells, cardiac fibroblasts, vascular smooth muscle cells, and valve interstitial cells) can lead to CVD, and highlight potential therapeutic approaches that target molecular mechanisms of cellular senescence to prevent or treat CVD.
引用
收藏
页码:1173 / 1187
页数:15
相关论文
共 174 条
  • [51] Rapamycin fed late in life extends lifespan in genetically heterogeneous mice
    Harrison, David E.
    Strong, Randy
    Sharp, Zelton Dave
    Nelson, James F.
    Astle, Clinton M.
    Flurkey, Kevin
    Nadon, Nancy L.
    Wilkinson, J. Erby
    Frenkel, Krystyna
    Carter, Christy S.
    Pahor, Marco
    Javors, Martin A.
    Fernandez, Elizabeth
    Miller, Richard A.
    [J]. NATURE, 2009, 460 (7253) : 392 - U108
  • [52] Thrombin Induces Angiotensin II-Mediated Senescence in Atrial Endothelial Cells: Impact on Pro-Remodeling Patterns
    Hasan, Hira
    Park, Sin-Hee
    Auger, Cyril
    Belcastro, Eugenia
    Matsushita, Kensuke
    Marchandot, Benjamin
    Lee, Hyun-Ho
    Qureshi, Abdul Wahid
    Kauffenstein, Gilles
    Ohlmann, Patrick
    Schini-Kerth, Valerie B.
    Jesel, Laurence
    Morel, Olivier
    [J]. JOURNAL OF CLINICAL MEDICINE, 2019, 8 (10)
  • [53] SIRT1 Suppresses the Senescence-Associated Secretory Phenotype through Epigenetic Gene Regulation
    Hayakawa, Tomohisa
    Iwai, Mika
    Aoki, Satoshi
    Takimoto, Koichi
    Maruyama, Mitsuo
    Maruyama, Wakako
    Motoyama, Noboru
    [J]. PLOS ONE, 2015, 10 (01):
  • [54] Mast cell-deficiency protects mice from streptozotocin-induced diabetic cardiomyopathy
    He, Aina
    Fang, Wenqian
    Zhao, Kun
    Wang, Yajun
    Li, Jie
    Yang, Chongzhe
    Benadjaoud, Feriel
    Shi, Guo-Ping
    [J]. TRANSLATIONAL RESEARCH, 2019, 208 : 1 - 14
  • [55] Neutrophils orchestrate post-myocardial infarction healing by polarizing macrophages towards a reparative phenotype
    Horckmans, Michael
    Ring, Larisa
    Duchene, Johan
    Santovito, Donato
    Schloss, Maximilian J.
    Drechsler, Maik
    Weber, Christian
    Soehnlein, Oliver
    Steffens, Sabine
    [J]. EUROPEAN HEART JOURNAL, 2017, 38 (03) : 187 - 197
  • [56] Production and autocrine/paracrine effects of endogenous insulin-like growth factor-1 in rat cardiac fibroblasts
    Horio, T
    Maki, T
    Kishimoto, I
    Tokudome, T
    Okumura, H
    Yoshihara, F
    Suga, S
    Takeo, S
    Kawano, Y
    Kangawa, K
    [J]. REGULATORY PEPTIDES, 2005, 124 (1-3) : 65 - 72
  • [57] Cytosolic p53 inhibits Parkin-mediated mitophagy and promotes mitochondrial dysfunction in the mouse heart
    Hoshino, Atsushi
    Mita, Yuichiro
    Okawa, Yoshifumi
    Ariyoshi, Makoto
    Iwai-Kanai, Eri
    Ueyama, Tomomi
    Ikeda, Koji
    Ogata, Takehiro
    Matoba, Satoaki
    [J]. NATURE COMMUNICATIONS, 2013, 4
  • [58] Chronic circadian misalignment accelerates immune senescence and abbreviates lifespan in mice
    Inokawa, Hitoshi
    Umemura, Yasuhiro
    Shimba, Akihiro
    Kawakami, Eiryo
    Koike, Nobuya
    Tsuchiya, Yoshiki
    Ohashi, Munehiro
    Minami, Yoichi
    Cui, Guangwei
    Asahi, Takuma
    Ono, Ryutaro
    Sasawaki, Yuh
    Konishi, Eiichi
    Yoo, Seung-Hee
    Chen, Zheng
    Teramukai, Satoshi
    Ikuta, Koichi
    Yagita, Kazuhiro
    [J]. SCIENTIFIC REPORTS, 2020, 10 (01)
  • [59] The human colon cancer methylome shows similar hypo- and hypermethylation at conserved tissue-specific CpG island shores
    Irizarry, Rafael A.
    Ladd-Acosta, Christine
    Wen, Bo
    Wu, Zhijin
    Montano, Carolina
    Onyango, Patrick
    Cui, Hengmi
    Gabo, Kevin
    Rongione, Michael
    Webster, Maree
    Ji, Hong
    Potash, James B.
    Sabunciyan, Sarven
    Feinberg, Andrew P.
    [J]. NATURE GENETICS, 2009, 41 (02) : 178 - 186
  • [60] MicroRNA-22 increases senescence and activates cardiac fibroblasts in the aging heart
    Jazbutyte, Virginija
    Fiedler, Jan
    Kneitz, Susanne
    Galuppo, Paolo
    Just, Annette
    Holzmann, Angelika
    Bauersachs, Johann
    Thum, Thomas
    [J]. AGE, 2013, 35 (03) : 747 - 762