A greedy average block Kaczmarz method for the large scaled consistent system of linear equations

被引:5
作者
Wen, Li [1 ,2 ]
Yin, Feng [1 ,2 ]
Liao, Yimou [1 ]
Huang, Guangxin [3 ]
机构
[1] Sichuan Univ Sci & Engn, Coll Math & Stat, Zigong 643000, Peoples R China
[2] Sichuan Univ Sci & Engn, Sichuan Prov Univ Key Lab Bridge Nondestruct Dete, Zigong 643000, Peoples R China
[3] Chengdu Univ Technol, Coll Math & Phys, Geomath Key Lab Sichuan, Chengdu 610059, Peoples R China
来源
AIMS MATHEMATICS | 2022年 / 7卷 / 04期
关键词
block Kaczmarz; extrapolated stepsize; greedy strategy; GABK; ITERATIVE ALGORITHMS;
D O I
10.3934/math.2022378
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper presents a greedy average block Kaczmarz (GABK) method to solve the large scaled consistent system of linear equations. The GABK method introduces the strategy of extrapolation process to improve the GBK algorithm and to avoid computing the Moore-Penrose inverse of a submatrix of the coefficient matrix determined by the block index set. The GABK method is proved to converge linearly to the least-norm solution of the consistent system of linear equations. Numerical examples show that the GABK method has the best efficiency and effectiveness among all methods compared.
引用
收藏
页码:6792 / 6806
页数:15
相关论文
共 19 条
[1]   ON GREEDY RANDOMIZED KACZMARZ METHOD FOR SOLVING LARGE SPARSE LINEAR SYSTEMS [J].
Bai, Zhong-Zhi ;
Wu, Wen-Ting .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2018, 40 (01) :A592-A606
[2]   A unified treatment of some iterative algorithms in signal processing and image reconstruction [J].
Byrne, C .
INVERSE PROBLEMS, 2004, 20 (01) :103-120
[3]   PARALLEL APPLICATION OF BLOCK-ITERATIVE METHODS IN MEDICAL IMAGING AND RADIATION-THERAPY [J].
CENSOR, Y .
MATHEMATICAL PROGRAMMING, 1988, 42 (02) :307-325
[4]   On a fast deterministic block Kaczmarz method for solving large-scale linear systems [J].
Chen, Jia-Qi ;
Huang, Zheng-Da .
NUMERICAL ALGORITHMS, 2022, 89 (03) :1007-1029
[5]   On the error estimate of the randomized double block Kaczmarz method [J].
Chen, Jia-Qi ;
Huang, Zheng-Da .
APPLIED MATHEMATICS AND COMPUTATION, 2020, 370
[6]   The University of Florida Sparse Matrix Collection [J].
Davis, Timothy A. ;
Hu, Yifan .
ACM TRANSACTIONS ON MATHEMATICAL SOFTWARE, 2011, 38 (01)
[7]   RANDOMIZED EXTENDED AVERAGE BLOCK KACZMARZ FOR SOLVING LEAST SQUARES [J].
Du, Kui ;
Si, Wu-Tao ;
Sun, Xiao-Hui .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2020, 42 (06) :A3541-A3559
[8]  
EGGERMONT PPB, 1981, LINEAR ALGEBRA APPL, V40, P37, DOI 10.1016/0024-3795(81)90139-7
[9]   GPU computing with Kaczmarz's and other iterative algorithms for linear systems [J].
Elble, Joseph M. ;
Sahinidis, Nikolaos V. ;
Vouzis, Panagiotis .
PARALLEL COMPUTING, 2010, 36 (5-6) :215-231
[10]   BLOCK-ITERATIVE METHODS FOR CONSISTENT AND INCONSISTENT LINEAR-EQUATIONS [J].
ELFVING, T .
NUMERISCHE MATHEMATIK, 1980, 35 (01) :1-12