The Cauchy Problem for the Euler-Poisson System and Derivation of the Zakharov-Kuznetsov Equation

被引:100
作者
Lannes, David [1 ]
Linares, Felipe [2 ]
Saut, Jean-Claude [3 ,4 ]
机构
[1] Ecole Normale Super, Dept Math & Applicat, 45 Rue Ulm, F-75230 Paris 05, France
[2] IMPA, BR-22460320 Rio De Janeiro, RJ, Brazil
[3] Univ Paris 11, Math Lab, UMR 8628, F-91405 Orsay, France
[4] CNRS, F-91405 Orsay, France
来源
STUDIES IN PHASE SPACE ANALYSIS WITH APPLICATIONS TO PDES | 2013年 / 84卷
关键词
Zakharov-Kuznetsov; Euler-Poisson; UNIQUE CONTINUATION; WELL-POSEDNESS; INSTABILITY; STABILITY; WAVES;
D O I
10.1007/978-1-4614-6348-1_10
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider in this paper the rigorous justification of the Zakharov-Kuznetsov equation from the Euler-Poisson system for uniformly magnetized plasmas. We first provide a proof of the local well-posedness of the Cauchy problem for the aforementioned system in dimensions two and three. Then we prove that the long-wave small-amplitude limit is described by the Zakharov-Kuznetsov equation. This is done first in the case of cold plasma; we then show how to extend this result in presence of the isothermal pressure term with uniform estimates when this latter goes to zero.
引用
收藏
页码:181 / 213
页数:33
相关论文
共 37 条
[1]   Large time existence for 3D water-waves and asymptotics [J].
Alvarez-Samaniego, Borys ;
Lannes, David .
INVENTIONES MATHEMATICAE, 2008, 171 (03) :485-541
[2]   Rigorous derivation of Korteweg-De Vries-type systems from a general class of nonlinear hyperbolic systems [J].
Ben Youssef, W ;
Colin, T .
ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2000, 34 (04) :873-911
[3]   On the support of solutions to the Zakharov-Kuznetsov equation [J].
Bustamante, Eddye ;
Isaza, Pedro ;
Mejia, Jorge .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2011, 251 (10) :2728-2736
[4]   ON THE FINITE TIME BLOW-UP OF THE EULER-POISSON EQUATIONS IN RN [J].
Chae, Donghao ;
Tadmor, Eitan .
COMMUNICATIONS IN MATHEMATICAL SCIENCES, 2008, 6 (03) :785-789
[5]  
Cheng B., ARXIV09021582V1
[6]  
Davidson R.C., 1972, Methods in Nonlinear Plasma Theory
[7]   Stability and instability of some nonlinear dispersive solitary waves in higher dimension [J].
deBouard, A .
PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 1996, 126 :89-112
[8]  
Faminskii AV, 1995, DIFF EQUAT+, V31, P1002
[9]   A note on the 2D generalized Zakharov-Kuznetsov equation: Local, global, and scattering results [J].
Farah, Luiz G. ;
Linares, Felipe ;
Pastor, Ademir .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2012, 253 (08) :2558-2571
[10]  
Gerard-Varet D., INDIANA U M IN PRESS