The proteasome of Mycobacterium tuberculosis is required for resistance to nitric oxide

被引:414
|
作者
Darwin, KH
Ehrt, S
Gutierrez-Ramos, JC
Weich, N
Nathan, CF [1 ]
机构
[1] Cornell Univ, Weill Med Coll, Dept Microbiol & Immunol, New York, NY 10021 USA
[2] Millennium Pharmaceut, Cambridge, MA 02139 USA
[3] Cornell Univ, Weill Grad Sch Med Sci, Program Immunol, New York, NY 10021 USA
[4] Cornell Univ, Weill Grad Sch Med Sci, Program Mol Biol, New York, NY 10021 USA
关键词
D O I
10.1126/science.1091176
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The production of nitric oxide and other reactive nitrogen intermediates (RNI) by macrophages helps to control infection by Mycobacterium tuberculosis (Mtb). However, the protection is imperfect and infection persists. To identify genes that Mtb requires to resist RNI, we screened 10,100 Mtb transposon mutants for hypersusceptibility to acidified nitrite. We found 12 mutants with insertions in seven genes representing six pathways, including the repair of DNA (uvrB) and the synthesis of a flavin cofactor (fbiC). Five mutants had insertions in proteasome-associated genes. An Mtb mutant deficient in a presumptive proteasomal adenosine triphosphatase was attenuated in mice, and exposure to proteasomal protease inhibitors markedly sensitized wild-type Mtb to RNI. Thus, the mycobacterial proteasome serves as a defense against oxidative or nitrosative stress.
引用
收藏
页码:1963 / 1966
页数:4
相关论文
共 50 条
  • [1] The Mycobacterium tuberculosis Proteasome Active Site Threonine Is Essential for Persistence Yet Dispensable for Replication and Resistance to Nitric Oxide
    Gandotra, Sheetal
    Lebron, Maria B.
    Ehrt, Sabine
    PLOS PATHOGENS, 2010, 6 (08) : 25 - 26
  • [2] A Multicopper Oxidase Is Required for Copper Resistance in Mycobacterium tuberculosis
    Rowland, Jennifer L.
    Niederweis, Michael
    JOURNAL OF BACTERIOLOGY, 2013, 195 (16) : 3724 - 3733
  • [3] Nitric Oxide Dioxygenation Reaction in DevS and the Initial Response to Nitric Oxide in Mycobacterium tuberculosis
    Yukl, Erik T.
    Ioanoviciu, Alexandra
    Sivaramakrishnan, Santhosh
    Nakano, Michiko M.
    de Montellano, Paul R. Ortiz
    Moenne-Loccoz, Pierre
    BIOCHEMISTRY, 2011, 50 (06) : 1023 - 1028
  • [4] Thienopyrimidines kill Mycobacterium tuberculosis by production of nitric oxide
    Salina, E. G.
    Egorova, A. P.
    Chiarelli, L. R.
    Pasca, M. R.
    Makarov, V. A.
    FEBS OPEN BIO, 2018, 8 : 239 - 240
  • [5] Mycobacterium tuberculosis proteasome inhibitors
    Clements, Gail V.
    Yepikhin, Alex S.
    Bashoff, Helena I.
    Dowd, Cynthia S.
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2013, 245
  • [6] Nitric oxide and nitric oxide resistance genes: Lessons from tuberculosis.
    Nathan, C
    FREE RADICAL BIOLOGY AND MEDICINE, 1998, 25 : S6 - S6
  • [7] Nitric oxide induces the distinct invisibility phenotype of Mycobacterium tuberculosis
    Gap-Gaupool, Brindha
    Glenn, Sarah M.
    Milburn, Emily
    Turapov, Obolbek
    Crosatti, Marialuisa
    Hincks, Jennifer
    Stewart, Bradley
    Bacon, Joanna
    Kendall, Sharon L.
    Voskuil, Martin I.
    Riabova, Olga
    Monakhova, Natalia
    Green, Jeffrey
    Waddell, Simon J.
    Makarov, Vadim A.
    Mukamolova, Galina V.
    COMMUNICATIONS BIOLOGY, 2024, 7 (01)
  • [8] Identification of substrates of the Mycobacterium tuberculosis proteasome
    Pearce, Michael J.
    Arora, Pooja
    Festa, Richard A.
    Butler-Wu, Susan M.
    Gokhale, Rajesh S.
    Darwin, K. Heran
    EMBO JOURNAL, 2006, 25 (22): : 5423 - 5432
  • [9] Direct EPR Detection of Nitric Oxide in Mice Infected with the Pathogenic Mycobacterium Mycobacterium tuberculosis
    Vanin, Anatoly F.
    Selitskaya, Raisa P.
    Serezhenkov, Vladimir A.
    Mozhokina, Galina N.
    APPLIED MAGNETIC RESONANCE, 2010, 38 (01) : 95 - 104
  • [10] Direct EPR Detection of Nitric Oxide in Mice Infected with the Pathogenic Mycobacterium Mycobacterium tuberculosis
    Anatoly F. Vanin
    Raisa P. Selitskaya
    Vladimir A. Serezhenkov
    Galina N. Mozhokina
    Applied Magnetic Resonance, 2010, 38 : 95 - 104