An S-transform approach to integration with respect to a fractional Brownian motion

被引:28
|
作者
Bender, C [1 ]
机构
[1] Univ Konstanz, Fac Sci, Dept Math & Stat, D-78457 Constance, Germany
关键词
change of measure; fractional Brownian motion; fractional Girsanov theorem; fractional Ito integral; S-transform;
D O I
10.3150/bj/1072215197
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We give an elementary definition of the (Wick-)Ito integral with respect to a fractional Brownian motion using the expectation, the ordinary Lebesgue integral and the classical (simple) Wiener integral. Then we provide new and simple proofs of some basic properties of this integral, including the so-called fractional Ito isometry. We calculate the expectation of the fractional Ito integral under change of measure and prove a Girsanov theorem for the fractional Ito integral (not only for fractional Brownian motion). We then derive an Ito formula for functionals of a fractional Wiener integral. Finally, we compare our approach with other approaches that yield essentially the same integral.
引用
收藏
页码:955 / 983
页数:29
相关论文
共 50 条
  • [31] On Fractional Brownian Motion and Wavelets
    Albeverio, S.
    Jorgensen, P. E. T.
    Paolucci, A. M.
    COMPLEX ANALYSIS AND OPERATOR THEORY, 2012, 6 (01) : 33 - 63
  • [32] Deconvolution of fractional Brownian motion
    Pipiras, V
    Taqqu, MS
    JOURNAL OF TIME SERIES ANALYSIS, 2002, 23 (04) : 487 - 501
  • [33] On the prediction of fractional Brownian motion
    Gripenberg, G
    Norros, I
    JOURNAL OF APPLIED PROBABILITY, 1996, 33 (02) : 400 - 410
  • [34] Arbitrage with fractional Brownian motion
    Rogers, LCG
    MATHEMATICAL FINANCE, 1997, 7 (01) : 95 - 105
  • [35] Fractal (fractional) Brownian motion
    Chow, Winston C.
    WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL STATISTICS, 2011, 3 (02): : 149 - 162
  • [36] Trading Fractional Brownian Motion
    Guasoni, Paolo
    Nika, Zsolt
    Rasonyi, Miklos
    SIAM JOURNAL ON FINANCIAL MATHEMATICS, 2019, 10 (03): : 769 - 789
  • [37] Fractional Brownian motion via fractional laplacian
    Bojdecki, T
    Gorostiza, LG
    STATISTICS & PROBABILITY LETTERS, 1999, 44 (01) : 107 - 108
  • [38] FRACTIONAL MARTINGALES AND CHARACTERIZATION OF THE FRACTIONAL BROWNIAN MOTION
    Hu, Yaozhong
    Nualart, David
    Song, Jian
    ANNALS OF PROBABILITY, 2009, 37 (06) : 2404 - 2430
  • [39] S-transform Based Approach for Texture Analysis of Medical Images
    Pradhan, Pyari Mohan
    Cheng, Chun Hing
    Mitchell, Joseph Ross
    2014 INTERNATIONAL CONFERENCE ON HIGH PERFORMANCE COMPUTING AND APPLICATIONS (ICHPCA), 2014,
  • [40] ON THE LAMPERTI TRANSFORM OF THE FRACTIONAL BROWNIAN SHEET
    Khalil, Marwa
    Tudor, Ciprian
    Zili, Mounir
    FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2016, 19 (06) : 1466 - 1487