Color image segmentation using multiscale fuzzy C-means and graph theoretic merging

被引:0
作者
Makrogiannis, S [1 ]
Theoharatos, C [1 ]
Economou, G [1 ]
Fotopoulos, S [1 ]
机构
[1] Univ Patras, Dept Phys, Elect Lab, Patras 26500, Greece
来源
2003 INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, VOL 1, PROCEEDINGS | 2003年
关键词
D O I
暂无
中图分类号
TB8 [摄影技术];
学科分类号
0804 ;
摘要
A multiresolution color image segmentation method is presented that incorporates the main principles of region-based and cluster analysis approaches. A multiscale dissimilarity measure in the feature space is proposed that makes use of non-parametric cluster validity analysis and fuzzy C-Means clustering. Detected clusters are utilized to assign membership functions to the image regions. In addition, a graph theoretic merging algorithm is presented that uses the formulation of fuzzy similarity relations to produce the final segmentation results. The efficiency of the resulting scheme is also experimentally indicated.
引用
收藏
页码:985 / 988
页数:4
相关论文
共 18 条
[1]  
[Anonymous], Pattern Recognition With Fuzzy Objective Function Algorithms
[2]  
[Anonymous], INT J COMPUTER VISIO
[3]   Algorithms for fuzzy segmentation [J].
Carvalho, BM ;
Gau, CJ ;
Herman, GT ;
Kong, TY .
PATTERN ANALYSIS AND APPLICATIONS, 1999, 2 (01) :73-81
[4]   Color image segmentation: advances and prospects [J].
Cheng, HD ;
Jiang, XH ;
Sun, Y ;
Wang, JL .
PATTERN RECOGNITION, 2001, 34 (12) :2259-2281
[5]  
Chiu SL., 1994, J INTELL FUZZY SYST, DOI [10.3233/IFS-1994-2306, DOI 10.3233/IFS-1994-2306]
[6]  
ECONOMOU G, 2001, P INT C IM PROC ICIP, V1, P22
[7]   MULTIRESOLUTION COLOR IMAGE SEGMENTATION [J].
LIU, JQ ;
YANG, YH .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 1994, 16 (07) :689-700
[8]  
MAKROGIANNIS S, 2001, P INT WORKSH VER LOW, P162
[9]  
MAKROGIANNIS S, 2001, P INT C IM PROC THES, V1, P734
[10]  
MORRIS OJ, 1986, IEE PROC-F, V133, P146, DOI 10.1049/ip-f-1.1986.0025