NONLINEAR CHOQUARD EQUATIONS ON HYPERBOLIC SPACE

被引:3
|
作者
He, Haiyang [1 ]
机构
[1] Hunan Normal Univ, Coll Math & Stat, Key Lab Comp & Stochast Math, Minist Educ, Changsha 410081, Hunan, Peoples R China
关键词
nonlinear Choquard equation; hyperbolic space; existence solutions; Hardy Littlewood Sobolev inequality; GROUND-STATES; EXISTENCE;
D O I
10.7494/OpMath.2022.42.5.691
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, our purpose is to prove the existence results for the following nonlinear Choquard equation -Delta(B)Nu = integral(BN)vertical bar u(y)(p)/vertical bar 2sinh rho(T-y(x))/2 vertical bar mu dV(y) . vertical bar u vertical bar(P-2)u + lambda u on the hyperbolic space B-N, where Delta(BN) denotes the Laplace-Beltrami operator on B-N, sinh rho(T-y(x))/2 = vertical bar T-y(x)vertical bar/root 1 - vertical bar T-y(x)vertical bar(2) = vertical bar x - y vertical bar/root(1 - vertical bar x vertical bar(2))(1 - vertical bar y vertical bar(2)), lambda is a real parameter, 0 < mu < N, 1 < p <= 2(mu)*, N >= 3 and 2(mu)* := 2N-mu/N-2 is the critical exponent in the sense of the Hardy Littlewood Sobolev inequality.
引用
收藏
页码:691 / 708
页数:18
相关论文
共 50 条
  • [21] On a class of elliptic equations with critical perturbations in the hyperbolic space
    Ganguly, Debdip
    Gupta, Diksha
    Sreenadh, K.
    ASYMPTOTIC ANALYSIS, 2024, 138 (04) : 225 - 253
  • [22] Asymptotic profiles for Choquard equations with combined attractive nonlinearities
    Ma, Shiwang
    Moroz, Vitaly
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2024, 412 : 613 - 689
  • [23] Normalized solutions for nonlinear Choquard equations with general nonlocal term
    Ao, Y.
    Zhao, X.
    Zou, W.
    JOURNAL OF FIXED POINT THEORY AND APPLICATIONS, 2023, 25 (01)
  • [24] Normalized ground states to the nonlinear Choquard equations with local perturbations
    Shang, Xudong
    ELECTRONIC RESEARCH ARCHIVE, 2024, 32 (03): : 1551 - 1573
  • [25] COUPLING TECHNIQUES FOR NONLINEAR HYPERBOLIC EQUATIONS
    Irmar, Benjamin Boutin
    Coquel, Frederic
    LeFloch, Philippe G.
    HYPERBOLIC PROBLEMS: THEORY, NUMERICS, APPLICATIONS, 2014, 8 : 349 - 356
  • [26] Poincar,-Sobolev equations in the hyperbolic space
    Bhakta, Mousomi
    Sandeep, K.
    CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2012, 44 (1-2) : 247 - 269
  • [27] Singularly perturbed critical Choquard equations
    Alves, Claudianor O.
    Gao, Fashun
    Squassina, Marco
    Yang, Minbo
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2017, 263 (07) : 3943 - 3988
  • [28] Ground state solutions for nonlinear Choquard equations with doubly critical exponents
    Lei, Chun-Yu
    Zhang, Binlin
    APPLIED MATHEMATICS LETTERS, 2022, 125
  • [29] Groundstates for a local nonlinear perturbation of the Choquard equations with lower critical exponent
    Van Schaftingen, Jean
    Xia, Jiankang
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2018, 464 (02) : 1184 - 1202
  • [30] GROUND STATES OF COUPLED CRITICAL CHOQUARD EQUATIONS WITH WEIGHTED POTENTIALS
    Zhu, Gaili
    Duan, Chunping
    Zhang, Jianjun
    Zhang, Huixing
    OPUSCULA MATHEMATICA, 2022, 42 (02) : 337 - 354