NONLINEAR CHOQUARD EQUATIONS ON HYPERBOLIC SPACE

被引:3
作者
He, Haiyang [1 ]
机构
[1] Hunan Normal Univ, Coll Math & Stat, Key Lab Comp & Stochast Math, Minist Educ, Changsha 410081, Hunan, Peoples R China
关键词
nonlinear Choquard equation; hyperbolic space; existence solutions; Hardy Littlewood Sobolev inequality; GROUND-STATES; EXISTENCE;
D O I
10.7494/OpMath.2022.42.5.691
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, our purpose is to prove the existence results for the following nonlinear Choquard equation -Delta(B)Nu = integral(BN)vertical bar u(y)(p)/vertical bar 2sinh rho(T-y(x))/2 vertical bar mu dV(y) . vertical bar u vertical bar(P-2)u + lambda u on the hyperbolic space B-N, where Delta(BN) denotes the Laplace-Beltrami operator on B-N, sinh rho(T-y(x))/2 = vertical bar T-y(x)vertical bar/root 1 - vertical bar T-y(x)vertical bar(2) = vertical bar x - y vertical bar/root(1 - vertical bar x vertical bar(2))(1 - vertical bar y vertical bar(2)), lambda is a real parameter, 0 < mu < N, 1 < p <= 2(mu)*, N >= 3 and 2(mu)* := 2N-mu/N-2 is the critical exponent in the sense of the Hardy Littlewood Sobolev inequality.
引用
收藏
页码:691 / 708
页数:18
相关论文
共 26 条
[1]   Poincar,-Sobolev equations in the hyperbolic space [J].
Bhakta, Mousomi ;
Sandeep, K. .
CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2012, 44 (1-2) :247-269
[2]   Classification of radial solutions to the Emden-Fowler equation on the hyperbolic space [J].
Bonforte, Matteo ;
Gazzola, Filippo ;
Grillo, Gabriele ;
Luis Vazquez, Juan .
CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2013, 46 (1-2) :375-401
[3]   POSITIVE SOLUTIONS OF NON-LINEAR ELLIPTIC-EQUATIONS INVOLVING CRITICAL SOBOLEV EXPONENTS [J].
BREZIS, H ;
NIRENBERG, L .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1983, 36 (04) :437-477
[4]  
Carriao PC, 2019, ELECTRON J DIFFER EQ
[5]  
Choquard P, 2008, DIFFER INTEGRAL EQU, V21, P665
[6]   The Brezis-Nirenberg type critical problem for the nonlinear Choquard equation [J].
Gao, Fashun ;
Yang, Minbo .
SCIENCE CHINA-MATHEMATICS, 2018, 61 (07) :1219-1242
[7]  
LIEB EH, 1977, STUD APPL MATH, V57, P93
[8]  
Lions P. L., 1980, Nonlinear Analysis Theory, Methods & Applications, V4, P1063, DOI 10.1016/0362-546X(80)90016-4
[9]   PANEITZ OPERATORS ON HYPERBOLIC SPACES AND HIGH ORDER HARDY-SOBOLEV-MAZ'YA INEQUALITIES ON HALF SPACES [J].
Lu, Guozhen ;
Yang, Qiaohua .
AMERICAN JOURNAL OF MATHEMATICS, 2019, 141 (06) :1777-1816
[10]   Classification of Positive Solitary Solutions of the Nonlinear Choquard Equation [J].
Ma, Li ;
Zhao, Lin .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2010, 195 (02) :455-467