NONLINEAR CHOQUARD EQUATIONS ON HYPERBOLIC SPACE

被引:3
|
作者
He, Haiyang [1 ]
机构
[1] Hunan Normal Univ, Coll Math & Stat, Key Lab Comp & Stochast Math, Minist Educ, Changsha 410081, Hunan, Peoples R China
关键词
nonlinear Choquard equation; hyperbolic space; existence solutions; Hardy Littlewood Sobolev inequality; GROUND-STATES; EXISTENCE;
D O I
10.7494/OpMath.2022.42.5.691
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, our purpose is to prove the existence results for the following nonlinear Choquard equation -Delta(B)Nu = integral(BN)vertical bar u(y)(p)/vertical bar 2sinh rho(T-y(x))/2 vertical bar mu dV(y) . vertical bar u vertical bar(P-2)u + lambda u on the hyperbolic space B-N, where Delta(BN) denotes the Laplace-Beltrami operator on B-N, sinh rho(T-y(x))/2 = vertical bar T-y(x)vertical bar/root 1 - vertical bar T-y(x)vertical bar(2) = vertical bar x - y vertical bar/root(1 - vertical bar x vertical bar(2))(1 - vertical bar y vertical bar(2)), lambda is a real parameter, 0 < mu < N, 1 < p <= 2(mu)*, N >= 3 and 2(mu)* := 2N-mu/N-2 is the critical exponent in the sense of the Hardy Littlewood Sobolev inequality.
引用
收藏
页码:691 / 708
页数:18
相关论文
共 50 条
  • [1] On nonlinear Schrodinger equations on the hyperbolic space
    Cencelj, Matija
    Farago, Istvan
    Horvath, Robert
    Repovs, Dusan D.
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2020, 492 (02)
  • [2] Multiplicity of normalized solutions for nonlinear Choquard equations
    Long, Chun-Fei
    Deng, Chonghao
    Li, Gui-Dong
    Tang, Chun-Lei
    ADVANCED NONLINEAR STUDIES, 2025,
  • [3] Front propagation for nonlinear diffusion equations on the hyperbolic space
    Matano, Hiroshi
    Punzo, Fabio
    Tesei, Alberto
    JOURNAL OF THE EUROPEAN MATHEMATICAL SOCIETY, 2015, 17 (05) : 1199 - 1227
  • [4] Ground states for nonlinear fractional Choquard equations with general nonlinearities
    Shen, Zifei
    Gao, Fashun
    Yang, Minbo
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2016, 39 (14) : 4082 - 4098
  • [5] Normalized solutions for a class of nonlinear Choquard equations
    Bartsch, Thomas
    Liu, Yanyan
    Liu, Zhaoli
    PARTIAL DIFFERENTIAL EQUATIONS AND APPLICATIONS, 2020, 1 (05):
  • [6] Nonlinear Choquard equations: Doubly critical case
    Seok, Jinmyoung
    APPLIED MATHEMATICS LETTERS, 2018, 76 : 148 - 156
  • [7] MULTIPLE NODAL SOLUTIONS OF NONLINEAR CHOQUARD EQUATIONS
    Huang, Zhihua
    Yang, Jianfu
    Yu, Weilin
    ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2017,
  • [8] Nontrivial solutions for nonlinear Schrodinger-Choquard equations with critical exponents
    Luo, Huxiao
    APPLIED MATHEMATICS LETTERS, 2020, 107
  • [9] Semilinear elliptic equations of the Henon-type in hyperbolic space
    Carriao, P. C.
    Faria, L. F. O.
    Miyagaki, O. H.
    COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, 2016, 18 (02)
  • [10] NONLINEAR CHOQUARD EQUATIONS WITH HARDY-LITTLEWOOD-SOBOLEV CRITICAL EXPONENTS
    Luo, Xiaorong
    Mao, Anmin
    Sang, Yanbin
    COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2021, 20 (04) : 1319 - 1345