Adaptive Solution of PDEs on Anisotropic Triangular Meshes

被引:0
作者
Agouzal, Abdelattif [1 ]
Lipnikov, Konstantin [2 ]
Vassilevski, Yuri [3 ]
机构
[1] Univ Lyon 1, Equipe Anal Numer Lyon St Etienne, Anal Numer Lab, Bat 101, F-69622 Villeurbanne, France
[2] Los Alamos Natl Lab, Los Alamos, NM 87545 USA
[3] Russian Acad Sci, Inst Numer Mathemat, Moscow, Russia
来源
NUMERICAL ANALYSIS AND APPLIED MATHEMATICS, VOLS I-III | 2010年 / 1281卷
基金
俄罗斯基础研究基金会;
关键词
anisotropic meshes; adaptive meshes; PDEs; finite elements;
D O I
暂无
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We describe a method for generating anisotropic adaptive meshes for finite element solution of second-order PDEs. The adaptive meshes allows us to minimize the gradient of a discretization error. The key element of this method is construction of a tensor metric from edge-based error estimates. We verify with numerical experiments that for a mesh with N triangles, the energy norm of the discretization error is proportional to N-1/2 even for strongly anisotropic meshes.
引用
收藏
页码:1558 / +
页数:2
相关论文
共 14 条
  • [1] Agouzal A., COMP METH APPL UNPUB
  • [2] Agouzal A., 2010, COMP MATH M IN PRESS, V50
  • [3] Buscaglia GC, 1997, INT J NUMER METH ENG, V40, P4119, DOI 10.1002/(SICI)1097-0207(19971130)40:22<4119::AID-NME254>3.0.CO
  • [4] 2-R
  • [5] CastroDiaz MJ, 1997, INT J NUMER METH FL, V25, P475, DOI 10.1002/(SICI)1097-0363(19970830)25:4<475::AID-FLD575>3.0.CO
  • [6] 2-6
  • [7] COUPEZ T, 1994, NUMERICAL GRID GENERATION IN COMPUTATIONAL FLUID DYNAMICS AND RELATED FIELDS, P615
  • [8] OPTIMAL TRIANGULAR MESH GENERATION BY COORDINATE TRANSFORMATION
    DAZEVEDO, EF
    [J]. SIAM JOURNAL ON SCIENTIFIC AND STATISTICAL COMPUTING, 1991, 12 (04): : 755 - 786
  • [9] Deuflhard P., 1989, Impact of Computing in Science and Engineering, V1, P3, DOI 10.1016/0899-8248(89)90018-9
  • [10] Anisotropic error estimates for elliptic problems
    Formaggia, L
    Perotto, S
    [J]. NUMERISCHE MATHEMATIK, 2003, 94 (01) : 67 - 92